K.S. Rangasamy College of Technology

(Autonomous)

CURRICULUM & SYLLABUS

of

M.E. Structural Engineering (For the Batch Admitted in 2025–2026)

R 2025

Programme Accredited by NAAC with 'A++' Grade, Approved by AICTE, Affiliated to Anna University, Chennai

> KSR Kalvi Nagar, Tiruchengode – 637 215. Namakkal District, Tamil Nadu, India

DEPARTMENT OF CIVIL ENGINEEIRNG VISION OF THE DEPARTMENT

• To empower the graduates to excel as a competent Professional in the areas of Design and Development of Safe, Healthy, Sustainable and Eco friendly Infrastructure for overall development of the Society.

MISSION OF THE DEPARTMENT

- To provide quality education through interdisciplinary research and innovative practices for the Betterment of human society in teaching and learning.
- To develop creative solutions for a wide range of challenges in Civil Engineering by adopting modern Tools and Techniques.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

- **PEO1:** Gain knowledge and skills in structural engineering which will enable them to have a career and professional accomplishment in the public or private sector organizations.
- **PEO2:** Become consultants in Structural Engineering and solve complex real-life issues related to the analysis, design and maintenance of structures under various environmental conditions.
- **PEO3:** Contribute to the enhancement of knowledge in Structural Engineering by performing quality research in institutions of international repute or Research organizations or Academia.

PROGRAM OUTCOMES (POs)

Engineering Graduates will be able to:

- **PO1:** Ability to individually carryout the STEM based (Science, Technology, Engineering, and Mathematics) research project.
- **PO2:** Ability to write, present and publish technical articles in reputed international/national conferences and journals.
- **PO3:** The skill developed by the student should be at a level of higher than the requirements in the appropriate bachelor program.
- **PO4:** Ability to acquire in depth knowledge of engineering design concepts and application of the same to solve complex engineering problems.
- **PO5:** Ability to find optimum safe and cost effective solutions in the development of mechanical systems taking into consideration sustainability, societal, environmental and public health aspects.
- **PO6:** Ability to support professional ethics and social responsibilities consistent with their roles as design engineers.

	Program Outcomes (POs)											
Program Educational Objectives (PEOs)	PO1	PO2	PO3	PO4	PO5	PO6						
PEO 1	3	2	3	3	2	1						
PEO 2	3	2	3	3	2	1						
PEO 3	3	2	3	3	2	1						

Year	Sem.	Course Name		POs								
rear	Sem.		1	2	3	4	5	6				
		Applied Mathematics for Structural Engineering										
		Theory of Elasticity and Plasticity										
		Structural Dynamics and Earthquake Engineering										
		Research Methodology and IPR										
		Stability of Structures										
		Theory of Plates and Shells										
	I	Design of Tall Buildings										
		Design of Structures for Dynamic Loads Fracture Mechanics of Concrete Structures										
		Design of Formwork										
		English for Research Paper Writing Advanced Concrete Technology Laboratory										
		<u> </u>										
		Technical Seminar Advanced Steel Design										
	П	Advanced Reinforced Concrete Design										
		Finite Element Analysis										
ļ		•										
		Structural Health Monitoring										
		Design of Sub Structures										
		Structural Optimization										
		Bridge Engineering										
		Non-linear Analysis of Structures										
		Life Cycle Assessment of Structures										
		Soil Structure Interaction										
		Design of Shell and Spatial Structures										
		Off Shore Structures										
		Experimental Methods and Model Analysis										
		Matrix Method of Structural Analysis										
		Wind and Cyclone Effect on Structures										
		Disaster Management Advanced Structural Engineering Laboratory										
		Computer Aided Design and Detailing laboratory										
		CADD for Structures										
		Design of Industrial Structures										
		Disaster Resistant Structures										
		Industrial Steel Structures										
		Industrial Steel Structures										
` II		Corrosion Engineering										
11	III	Reliability Analysis of Structures										
		Advanced Prestressed Concrete										
		Advanced Concrete Technology										
		Earthquake resistant design of Structures										

	Maintenance and Rehabilitation of Structures			
	Design of Steel Concrete Composite Structures			
	Mechanics of Fiber Reinforced Polymer Composite Materials			
	Project Work Phase - I			
	Inplant Training			
IV	Project Work Phase - II			

K.S. RANGASAMY COLLEGE OF TECHNOLOGY

Credit Distribution for M.E. (Structural Engineering) Program: 2025 - 2026 Batch

C No.	0-1	Credits pe	Credits per Semester						
S.No.	Category	I	II	III	IV	Credits	%		
1.	PC	17	14	-	-	31	42.46		
2.	PE	3	6	6	-	15	20.56		
3.	CG	1	-	10	16	27	36.98		
4.	AC	-	-	-	-	-			
	Total	21	20	16	16	73	100		

PC - PROFESSIONAL CORE

PE – PROFESSIONAL ELECTIVES

CG - CAREER GUIDANCE COURSES

AC- AUDIT COURSES

K.S.RANGASAMY COLLEGE OF TECHNOLOGY, TIRUCHENGODE -637215

(Autonomous)

PROFESSIONAL CORE COURSES (PC)

S.No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С	Pre-Requisite
1.	70 PSE 101	Applied Mathematics for Structural Engineering	PC	5	3	1	0	4	Engineering Mathematics, Probability and Statistics
2.	70 PSE 102	Theory of Elasticity and Plasticity	PC	5	3	1	0	4	Fundamentals of Mathematics, Strength of Material
3.	70 PSE 103	Structural Dynamics	PC	5	3	1	0	4	Fundamentals of Mathematics
4.	70 PIS 001	Research Methodology and IPR	PC	3	3	0	0	3	Nil
5.	70 PSE 1P1	Advanced Concrete Technology Laboratory	PC	4	0	0	4	2	Concrete Technology
6.	70 PSE 201	Advanced Steel Design	PC	3	3	0	0	3	Steel member design and foundation design
7.	70 PSE 202	Advanced Reinforced Concrete Design	PC	3	3	0	0	3	Design of RC elements
8.	70 PSE 203	Finite Element Analysis	PC	5	3	0	0	4	Knowledge of forces and resolution and equilibrium concepts.
9.	70 PSE 2P1	Advanced Structural Engineering Laboratory	PC	4	0	0	4	2	Basic RC and steel design theory and design
10.	70 PSE 2P2	Computer Aided Design and Detailing laboratory	PC	4	0	0	4	2	CAD for structures

PROFESSIONAL ELECTIVES (PE) SEMESTER I, PROFESSIONAL ELECTIVE I

S.No.	Course Code	Course Title	Category	Contact Periods	L	Т	P	С	Pre-Requisite
1.	70 PSE E11	Stability of Structures	PE	3	3	0	0	3	Strength of materials and Structural Analysis
2.	70 PSE E12	Theory of Plates and Shells	PE	3	3	0	0	3	Strength of materials and its mechanics
3.	70 PSE E13	Design of Tall Buildings	PE	3	3	0	0	3	Industrial Structures
4.	70 PSE E14	Design of Structures for Dynamic Loads	PE	3	3	0	0	3	Structural Dynamics
5.	70 PSE E15	Fracture Mechanics of Concrete Structures	PE	3	3	0	0	3	Basic Strength of material
6.	70 PSE E16	Design of Formwork	PE	3	3	0	0	3	Design of RCC and Steel Structures

SEMESTER II, PROFESSIONAL ELECTIVE II

S.No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С	Pre-Requisite
1.	70 PSE E21	Structural Health Monitoring	PE	3	3	0	0	3	Nil
2.	70 PSE E22	Design of Sub Structures	PE	3	3	0	0	3	Foundation design
3.	70 PSE E23	Structural Optimization	PE	3	3	0	0	3	Nil
4.	70 PSE E24	Bridge Engineering	PE	3	3	0	0	3	Design concepts of RCC, Prestressed concrete and steel structures.
5.	70 PSE E25	Non-linear Analysis of Structures	PE	3	3	0	0	3	Finite element methods
6.	70 PSE E26	Life Cycle Assessment of Structures	PE	3	3	0	0	3	Construction Materials and Repair and Rehabilitation of Structures

SEMESTER II, PROFESSIONAL ELECTIVE III

S.No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С	Pre-Requisite
1.	70 PSE E31	Soil Structure Interaction	PE	3	3	0	0	3	Geotechnical Engineering
2.	70 PSE E32	Design of Shell and Spatial Structures	PE	3	3	0	0	3	Theory of elasticity and plasticity.
3.	70 PSE E33	Off Shore Structures	PE	3	3	0	0	3	Nil
4.	70 PSE E34	Experimental Methods and Model Analysis	PE	3	3	0	0	3	Fundamentals of Mathematics and Structural Analysis
5.	70 PSE E35	Matrix Method of Structural Analysis	PE	3	3	0	0	3	Mechanics of structures and structural analysis.
6.	70 PSE E36	Wind and Cyclone Effect on Structures	PE	3	3	0	0	3	Analysis of Structures

SEMESTER III, PROFESSIONAL ELECTIVE IV

S.No.	Course Code	Course Title	Category	Contact Periods	L	T	Р	С	Pre-Requisite
1.	70 PSE E41	CADD for Structures	PE	3	3	0	0	3	Nil
2.	70 PSE E42	Design of Industrial Structures	PE	3	3	0	0	3	Steel Structures
3.	70 PSE E43	Disaster Resistant Structures	PE	3	3	0	0	3	Nil
4.	70 PSE E44	Industrial Steel Structures	PE	3	3	0	0	3	Steel Structures
5.	70 PSE E45	Corrosion Engineering	PE	3	3	0	0	3	RCC and Steel Structures
6.	70 PSE E46	Reliability Analysis of Structures	PE	3	3	0	0	3	Structural Analysis

SEMESTER III, PROFESSIONAL ELECTIVE V

S.No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С	Pre-Requisite
1.	70 PSE E51	Advanced Prestressed Concrete	PE	3	3	0	0	3	Nil
2.	70 PSE E52	Advanced Concrete Technology	PE	3	3	0	0	3	Concrete Technology
3.	70 PSE E53	Earthquake resistant design of Structures	PE	3	3	0	0	3	Dynamics of Structures
4.	70 PSE E54	Maintenance and Rehabilitation of Structures	PE	3	3	0	0	3	Construction materials and practices
5.	70 PSE E55	Design of Steel Concrete Composite Structures	PE	3	3	0	0	3	RCC and Steel Structures
6.	70 PSE E56	Mechanics of Fiber Reinforced Polymer Composite Materials	PE	3	3	0	0	3	Construction Materials and Concrete Technology

AUDIT COURSES (AC)

S.No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С	Pre-Requisite
1.	70 PAC 001	English For Research Paper Writing	AC	2	2	0	0	0	-NIL-
2.	70 PAC 002	Disaster Management	AC	2	2	0	0	0	-NIL-
3.	70 PAC 003	Constitution of India	AC	2	2	0	0	0	-NIL-

CAREER GUIDANCE COURSES (CG)

S.No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С	Pre-Requisite
1.	70 PSE 1P2	Technical Seminar	CG	2	0	0	2	1	Nil
2.	70 PSE 3P1	Project Work Phase - I	CG	16	0	0	16	08	Nil
3.	70 PSE 3P2	Inplant Training	CG	0	0	0	0	2	Nil
4.	70 PSE 4P1	Project Work Phase - II	CG	32	0	0	32	16	Project Work Phase - I

K.S.RANGASAMY COLLEGE OF TECHNOLOGY, TIRUCHENGODE -637215

(An Autonomous Institution, Affiliated to Anna University, Chennai)

COURSES OF STUDY (For the Batch Admitted in 2025 - 2026)

SEMESTER I

S.No.	Course Code	Course Title	Contact Periods	L	Т	Р	С	
	THEORY							
1.	70 PSE 101	Applied Mathematics for Structural	PC	5	3	1	0	4
1.	70 PSE 101	Engineering						
2.	70 PSE 102	Theory of Elasticity and Plasticity	PC	5	3	1	0	4
3.	70 PSE 103	Structural Dynamics	PC	5	3	1	0	4
4.	70 PIS 001	Research Methodology and IPR	PC	3	3	0	0	3
5.	70 PSE E1*	Professional Elective I	PE	3	3	0	0	3
6.	70 PAC 001	English for Research Paper Writing	AC	2	2	0	0	0
		PRACTICALS						
7.	70 PSE 1P1	Advanced Concrete Technology	PC	4	0	0	4	2
7.	70 PSE 1P1	Laboratory						
8.	70 PSE 1P2	Technical Seminar	CG	2	0	0	2	1
			Total	29	17	3	6	21

SEMESTER II

S.No.	Course Code	Course Title Category		Contact Periods	L	Т	Р	С		
	THEORY									
1.	70 PSE 201	Advanced Steel Design	PC	3	3	0	0	3		
2.	70 PSE 202	Advanced Reinforced Concrete Design	3	3	0	0	3			
3.	70 PSE 203	Finite Element Analysis	PC	5	3	1	0	4		
4.	70 PSE E2*	Professional Elective II	3	3	0	0	3			
5.	70 PSE E3*	Professional Elective III	3	3	0	0	3			
6.	70 PAC 002	Disaster Management	AC	2	2	0	0	0		
		PRACTICALS								
7.	70 PSE 2P1	Advanced Structural Engineering Laboratory	PC	4	0	0	4	2		
8.	70 PSE 2P2	Computer Aided Design and Detailing laboratory	4	0	0	4	2			
	Total 27 17 1 8 20							20		

SEMESTER III

S.No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С
		THEORY						
1.	70 PSE E4*	Professional Elective IV	PE	3	3	0	0	3
2.	70 PSE E5*	Professional Elective V	3	3	0	0	3	
		PRACTICALS						
3.	70 PSE3P1	Project Work Phase - I	CG	16	0	0	16	8
4.	4. 70 PSE3P2 Inplant Training CG					0	0	2
	Total 22 6 0 16 16							

SEMESTER IV

S.No.	Course Code	Category	Contact Periods	L	T	Р	С		
	THEORY								
	PRACTICALS								
1.	1. 70 PSE4P1 Project Work Phase - II CG 32 0 0 32 16								
	Total 32 0 0 32							16	

TOTAL NUMBER OF CREDITS TO BE EARNED FOR AWARD OF THE DEGREE = 73

Note:

PC- Professional Core Courses; PE- Professional Elective Courses; CG-Career Guidance Courses; AC- Audit Courses.

L: Lecture

T: Tutorial

P: Practical

C: Credit

1 Hour Lecture = 1 credit 1 Tutorial = 1 credit 2 Hours Practical = 1 credit

		Category	L	Т	Р	Credit
70 PSE101	Applied Mathematics for Structural Engineering	PC	3	1	0	4

- To describe the various methods of finding eigenvalues of matrices
- To understand the least square method to find the curve of best fit
- To get exposed to the functional optimization related problems
- To acquire knowledge of solving partial differential equations using Laplace transform
- To familiarize the techniques of Fourier transform for solving the boundary value problems

Pre-requisites

• Matrices and Calculus

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Apply various iteration techniques to find the eigenvalues of matrices.	Apply
CO2	Use method of least square to find the best fit of curves and analyze interpolation problems.	Understand
CO3	Compute the solutions for functional optimization problems.	Apply
CO4	Solve partial differential equations using Laplace transform.	Apply
CO5	Apply Fourier transform techniques to solve the boundary value problems.	Apply

Mapping	Mapping with Programme Outcomes								
COs	POs								
COS	1	2	3	4	5	6			
CO1	3	3	2	1	2	-			
CO2	3	3	2	1	2	-			
CO3	2	2	-	-	-	-			
CO4	3	3	2	1	2	-			
CO5	CO5 3 3 2 1 2 -								
3 - Stror	3 - Strong; 2 - Medium; 1 - Some								

Assessment Pattern	Assessment Pattern							
Bloom's Cotogon	Continuous Asses	ssment Tests (Marks)						
Bloom's Category	1	2	End Sem Examination (Marks)					
Remember	10	10	20					
Understand	20	10	30					
Apply	30	40	50					
Analyse	=	-	-					
Evaluate	-	-	-					
Create	=	-	-					
Total	10	60	100					

Semester	Syllabu	S								
Total Credit Maximum Marks		K	.S.Rangasa				mous R2022			
Hours/Week										
L T P Hours C CA ES Total				• • •						
L I B Hours C CA ES Iotal	Semes	ter								
Figenvalue Problems* Solution of system of linear equation by Gauss Seidal iterative method − Eigen value and eigen vector by iterative methods: Power method − Jacobi method − Given's method − House holder method. Regression Analysis* Curve fitting by the method of least squares − Fitting a curve of the form y = ax ^b and y = ae ^{bx} . [9] Interpolation: polynomial approximation − Lagrange's method − Newton's method. Calculus of Variations* Concept of variation and its properties − Euler's equation − Functional dependent on first and higher order derivatives − Functionals dependent on functions of several independent variables − Variational problems with moving boundaries − Isoperimetric problems − Direct methods − Ritz method. Laplace Transform Techniques for Partial Differential Equations* Laplace transform: Definitions − Properties − Dirac delta function − Unit step functions − Convolution theorem − Inverse Laplace transform: Complex inversion formula − Solutions to partial differential equations: Heat equation − Wave equation. Fourier Transform Techniques for Partial Differential Equations* Fourier transform Definitions − Properties − Transform of elementary functions − Convolution theorem − Parseval's identity − Solutions to partial differential equations: Heat equation − Wave equation − Laplace and Poisson's equations. Total Hours (45+15) (Tutorial) Text Book(s): 1. Jain M K, Iyengar S R K and Jain R K, "Numerical Methods: For Scientific and Engineering Computation", 8the Edition, New Age International Private Limited, New Delhi, 2022. 2. Sankara Rao K, "Introduction to Partial Differential Equations", 3rd Edition, Prentice Hall of India Pvt. Ltd., New Delhi, 2013. 2. Gupta A S, "Calculus of Variations with Applications", Prentice Hall of India Pvt. Ltd., New Delhi 1999. Rajasekaran S, "Numerical Methods in Science and Engineering: A Practical Approach", S.Chand& Co., New Delhi, 1st Edition, 1999 (Reprint 2012). James G, "Advanced Modern Engineering Mathematics", 3rd Edition, Pearson Education,		L								
Solution of system of linear equation by Gauss Seidal iterative method – Eigen value and eigen vector by iterative methods: Power method – Jacobi method – Given's method – House holder method. Regression Analysis* Curve fitting by the method of least squares – Fitting a curve of the form $y = ax^b$ and $y = ae^{bx}$. [9] Interpolation: polynomial approximation – Lagrange's method – Newton's method. Calculus of Variations* Concept of variations and its properties – Euler's equation – Functional dependent on first and higher order derivatives – Functionals dependent on functions of several independent variables – Variational problems with moving boundaries – Isoperimetric problems – Direct methods – Ritz method. Laplace Transform Techniques for Partial Differential Equations* Laplace transform: Definitions – Properties – Dirac delta function – Unit step functions – Convolution theorem – Inverse Laplace transform: Complex inversion formula – Solutions to partial differential equations: Heat equation – Wave equation. Fourier Transform Techniques for Partial Differential Equations* Fourier transform: Definitions – Properties – Transform of elementary functions – Convolution theorem – Parseval's identity – Solutions to partial differential equations: Heat equation – Wave equation – Laplace and Poisson's equations. Total Hours (45+15) (Tutorial) 60 Text Book(s): 1. Jain M K, Iyengar S R K and Jain R K, "Numerical Methods: For Scientific and Engineering Computation", New Age International Private Limited, New Delhi, 2022. 2. Sankara Rao K, "Introduction to Partial Differential Equations", 3rd Edition, Prentice Hall of India Pvt. Ltd., New Delhi, 2013. 2. Gupta A S, "Calculus of Variations with Applications", Prentice Hall of India Pvt. Ltd., New Delhi, 1st Edition, 1999 (Reprint 2012). 3. New Delhi, 1st Edition, 1999 (Reprint 2012). 4. James G, "Advanced Modern Engineering Mathematics", 3rd Edition, Pearson Education, 2004.			1	0	60	4	40	60	100	
Segression Analysis*	•									
Regression Analysis* Curve fitting by the method of least squares – Fitting a curve of the form $y = ax^b$ and $y = ae^{bx}$. [9] Interpolation: polynomial approximation – Lagrange's method – Newton's method. Calculus of Variations* Concept of variation and its properties – Euler's equation – Functional dependent on first and higher order derivatives – Functionals dependent on functions of several independent variables – Variational problems with moving boundaries – Isoperimetric problems – Direct methods – Ritz method. Laplace Transform Techniques for Partial Differential Equations* Laplace transform: Definitions – Properties – Dirac delta function – Unit step functions – Convolution theorem – Inverse Laplace transform: Complex inversion formula – Solutions to partial differential equations: Heat equation – Wave equation. Fourier Transform Techniques for Partial Differential Equations* Fourier transform: Definitions – Properties – Transform of elementary functions – Convolution theorem – Parseval's identity – Solutions to partial differential equations: Heat equation – Wave equation – Laplace and Poisson's equations. Total Hours (45+15) (Tutorial) Text Book(s): 1.									[9]	
Curve fitting by the method of least squares – Fitting a curve of the form $y = ax^b$ and $y = ae^{bx}$. [9] Interpolation: polynomial approximation – Lagrange's method – Newton's method. Calculus of Variations* Concept of variation and its properties – Euler's equation – Functional dependent on first and higher order derivatives – Functionals dependent on functions of several independent variables – Variational problems with moving boundaries – Isoperimetric problems – Direct methods – Ritz method. Laplace Transform Techniques for Partial Differential Equations* Laplace transform: Definitions – Properties – Dirac delta function – Unit step functions – Convolution theorem – Inverse Laplace transform: Complex inversion formula – Solutions to partial differential equations: Heat equation – Wave equation. Fourier Transform Techniques for Partial Differential Equations* Fourier transform Definitions – Properties – Transform of elementary functions – Convolution theorem – Parseval's identity – Solutions to partial differential equations: Heat equation – Wave equation – Laplace and Poisson's equations. Total Hours (45+15) (Tutorial) Text Book(s): 1. Jain M K, Iyengar S R K and Jain R K, "Numerical Methods: For Scientific and Engineering Computation", 8th Edition, New Age International Private Limited, New Delhi, 2022. 2. Sankara Rao K, "Introduction to Partial Differential Equations", 3rd Edition, Prentice Hall of India Pvt. Ltd., New Delhi, 2011. Reference(s): 1. Grewal B S, "Numerical methods in Engineering and Science, 11th Edition, Khanna Publishers, New Delhi, 2013. 2. Grewal B S, "Calculus of Variations with Applications", Prentice Hall of India Pvt. Ltd., New Delhi, 1st Edition, 1999 (Reprint 2012). 4. James G, "Advanced Modern Engineering Mathematics", 3rd Edition, Pearson Education, 2004.			er method –	Jacobi metho	d – Given's n	nethod – Hou	ise holder me	ethod.		
Interpolation: polynomial approximation – Lagrange's method – Newton's method. Calculus of Variations*							h	ı hr	FO1	
Calculus of Variations* Concept of variation and its properties — Euler's equation — Functional dependent on first and higher order derivatives — Functionals dependent on functions of several independent variables — Variational problems with moving boundaries — Isoperimetric problems — Direct methods — Ritz method. Laplace Transform Techniques for Partial Differential Equations* Laplace transform: Definitions — Properties — Dirac delta function — Unit step functions — Convolution theorem — Inverse Laplace transform: Complex inversion formula — Solutions to partial differential equations: Heat equation — Wave equation. Fourier Transform Techniques for Partial Differential Equations* Fourier transform: Definitions — Properties — Transform of elementary functions — Convolution theorem — Parseval's identity — Solutions to partial differential equations: Heat equation — Wave equation — Laplace and Poisson's equations. Total Hours (45+15) (Tutorial) 60 Text Book(s): 1. Jain M K, Iyengar S R K and Jain R K, "Numerical Methods: For Scientific and Engineering Computation", 8th Edition, New Age International Private Limited, New Delhi, 2022. 2. Sankara Rao K, "Introduction to Partial Differential Equations", 3rd Edition, Prentice Hall of India Pvt. Ltd., New Delhi, 2011. Reference(s): 1. Grewal B S, "Numerical methods in Engineering and Science, 11th Edition, Khanna Publishers, New Delhi, 2013. 2. Gupta A S, "Calculus of Variations with Applications", Prentice Hall of India Pvt. Ltd., New Delhi 1999. 3. Rajasekaran S, "Numerical Methods in Science and Engineering: A Practical Approach", S.Chand& Co., New Delhi, 1st Edition, 1999 (Reprint 2012). 4. James G, "Advanced Modern Engineering Mathematics", 3rd Edition, Pearson Education, 2004.								id $y = ae^{bx}$.	[9]	
Concept of variation and its properties – Euler's equation – Functional dependent on first and higher order derivatives – Functionals dependent on functions of several independent variables – Variational problems with moving boundaries – Isoperimetric problems – Direct methods – Ritz method. Laplace Transform Techniques for Partial Differential Equations* Laplace transform: Definitions – Properties – Dirac delta function – Unit step functions – Convolution theorem – Inverse Laplace transform: Complex inversion formula – Solutions to partial differential equations: Heat equation – Wave equation. Fourier Transform Techniques for Partial Differential Equations* Fourier transform: Definitions – Properties – Transform of elementary functions – Convolution theorem – Parseval's identity – Solutions to partial differential equations: Heat equation – Wave equation – Laplace and Poisson's equations. Total Hours (45+15) (Tutorial) 60 Text Book(s): 1. Jain M K, Iyengar S R K and Jain R K, "Numerical Methods: For Scientific and Engineering Computation", 8th Edition, New Age International Private Limited, New Delhi, 2022. Sankara Rao K, "Introduction to Partial Differential Equations", 3rd Edition, Prentice Hall of India Pvt. Ltd., New Delhi, 2011. Reference(s): 1. Grewal B S, "Numerical methods in Engineering and Science, 11th Edition, Khanna Publishers, New Delhi, 2013. 2. Gupta A S, "Calculus of Variations with Applications", Prentice Hall of India Pvt. Ltd., New Delhi 1999. Rajasekaran S, "Numerical Methods in Science and Engineering: A Practical Approach", S.Chand& Co., New Delhi, 1st Edition, 1999 (Reprint 2012). 4. James G, "Advanced Modern Engineering Mathematics", 3rd Edition, Pearson Education, 2004.			pproximation	ı – Lagrange	s metnoa – N	lewton's meti	noa.			
order derivatives – Functionals dependent on functions of several independent variables – Variational problems with moving boundaries – Isoperimetric problems – Direct methods – Ritz method. Laplace Transform Techniques for Partial Differential Equations* Laplace transform: Definitions – Properties – Dirac delta function – Unit step functions – Convolution theorem – Inverse Laplace transform: Complex inversion formula – Solutions to partial differential equations: Heat equation – Wave equation. Fourier Transform Techniques for Partial Differential Equations* Fourier transform: Definitions – Properties – Transform of elementary functions – Convolution theorem – Parseval's identity – Solutions to partial differential equations: Heat equation – Wave equation – Laplace and Poisson's equations. Total Hours (45+15) (Tutorial) 60 Text Book(s): 1. Jain M K, Iyengar S R K and Jain R K, "Numerical Methods: For Scientific and Engineering Computation", 8th Edition, New Age International Private Limited, New Delhi, 2022. 2. Sankara Rao K, "Introduction to Partial Differential Equations", 3rd Edition, Prentice Hall of India Pvt. Ltd., New Delhi, 2011. Reference(s): 1. Grewal B S, "Numerical methods in Engineering and Science, 11th Edition, Khanna Publishers, New Delhi, 2013. 2. Gupta A S, "Calculus of Variations with Applications", Prentice Hall of India Pvt. Ltd., New Delhi 1999. 3. Rajasekaran S, "Numerical Methods in Science and Engineering: A Practical Approach", S.Chand& Co., New Delhi, 1st Edition, 1999 (Reprint 2012). 4. James G, "Advanced Modern Engineering Mathematics", 3rd Edition, Pearson Education, 2004.			ta proportios	Fulor's on	ustion Fun	ational dance	ndont on fire	t and higher		
Problems with moving boundaries – Isoperimetric problems – Direct methods – Ritz method.									[9]	
Laplace Transform Techniques for Partial Differential Equations* Laplace transform: Definitions – Properties – Dirac delta function – Unit step functions – Convolution theorem – Inverse Laplace transform: Complex inversion formula – Solutions to partial differential equations: Heat equation – Wave equation. Fourier Transform Techniques for Partial Differential Equations* Fourier transform: Definitions – Properties – Transform of elementary functions – Convolution theorem – Parseval's identity – Solutions to partial differential equations: Heat equation – Wave equation – Laplace and Poisson's equations. Total Hours (45+15) (Tutorial) 60 Text Book(s): 1. Jain M K, Iyengar S R K and Jain R K, "Numerical Methods: For Scientific and Engineering Computation", 8th Edition, New Age International Private Limited, New Delhi, 2022. 2. Sankara Rao K, "Introduction to Partial Differential Equations", 3rd Edition, Prentice Hall of India Pvt. Ltd., New Delhi, 2011. Reference(s): 1. Grewal B S, "Numerical methods in Engineering and Science, 11th Edition, Khanna Publishers, New Delhi, 2013. 2. Gupta A S, "Calculus of Variations with Applications", Prentice Hall of India Pvt. Ltd., New Delhi 1999. 3. Rajasekaran S, "Numerical Methods in Science and Engineering: A Practical Approach", S.Chand& Co., New Delhi, 1st Edition, 1999 (Reprint 2012). 4. James G, "Advanced Modern Engineering Mathematics", 3rd Edition, Pearson Education, 2004.			•			•				
Laplace transform: Definitions – Properties – Dirac delta function – Unit step functions – Convolution theorem – Inverse Laplace transform: Complex inversion formula – Solutions to partial differential equations: Heat equation – Wave equation. Fourier Transform Techniques for Partial Differential Equations* Fourier transform: Definitions – Properties – Transform of elementary functions – Convolution theorem – Parseval's identity – Solutions to partial differential equations: Heat equation – Wave equation – Laplace and Poisson's equations. Total Hours (45+15) (Tutorial) 60 Text Book(s): 1. Jain M K, Iyengar S R K and Jain R K, "Numerical Methods: For Scientific and Engineering Computation", 8th Edition, New Age International Private Limited, New Delhi, 2022. 2. Sankara Rao K, "Introduction to Partial Differential Equations", 3rd Edition, Prentice Hall of India Pvt. Ltd., New Delhi, 2011. Reference(s): 1. Grewal B S, "Numerical methods in Engineering and Science, 11th Edition, Khanna Publishers, New Delhi, 2013. 2. Gupta A S, "Calculus of Variations with Applications", Prentice Hall of India Pvt. Ltd., New Delhi 1999. 3. Rajasekaran S, "Numerical Methods in Science and Engineering: A Practical Approach", S.Chand& Co., New Delhi, 1st Edition, 1999 (Reprint 2012). 4. James G, "Advanced Modern Engineering Mathematics", 3rd Edition, Pearson Education, 2004.							TAILE THE GITO	u.		
theorem – Inverse Laplace transform: Complex inversion formula – Solutions to partial differential equations: Heat equation – Wave equation. Fourier Transform Techniques for Partial Differential Equations* Fourier transform: Definitions – Properties – Transform of elementary functions – Convolution theorem – Parseval's identity – Solutions to partial differential equations: Heat equation – Wave equation – Laplace and Poisson's equations. Total Hours (45+15) (Tutorial) 60 Text Book(s): 1. Jain M K, Iyengar S R K and Jain R K, "Numerical Methods: For Scientific and Engineering Computation", 8th Edition, New Age International Private Limited, New Delhi, 2022. 2. Sankara Rao K, "Introduction to Partial Differential Equations", 3rd Edition, Prentice Hall of India Pvt. Ltd., New Delhi, 2011. Reference(s): 1. Grewal B S, "Numerical methods in Engineering and Science, 11th Edition, Khanna Publishers, New Delhi, 2013. 2. Gupta A S, "Calculus of Variations with Applications", Prentice Hall of India Pvt. Ltd., New Delhi 1999. Rajasekaran S, "Numerical Methods in Science and Engineering: A Practical Approach", S.Chand& Co., New Delhi, 1st Edition, 1999 (Reprint 2012). 4. James G, "Advanced Modern Engineering Mathematics", 3rd Edition, Pearson Education, 2004.							functions –	Convolution		
equations: Heat equation – Wave equation. Fourier Transform Techniques for Partial Differential Equations* Fourier transform: Definitions – Properties – Transform of elementary functions – Convolution theorem – Parseval's identity – Solutions to partial differential equations: Heat equation – Wave equation – Laplace and Poisson's equations. Total Hours (45+15) (Tutorial) 60 Text Book(s): 1. Jain M K, Iyengar S R K and Jain R K, "Numerical Methods: For Scientific and Engineering Computation", 8th Edition, New Age International Private Limited, New Delhi, 2022. 2. Sankara Rao K, "Introduction to Partial Differential Equations", 3rd Edition, Prentice Hall of India Pvt. Ltd., New Delhi, 2011. Reference(s): 1. Grewal B S, "Numerical methods in Engineering and Science, 11th Edition, Khanna Publishers, New Delhi, 2013. 2. Gupta A S, "Calculus of Variations with Applications", Prentice Hall of India Pvt. Ltd., New Delhi 1999. 3. Rajasekaran S, "Numerical Methods in Science and Engineering: A Practical Approach", S.Chand& Co., New Delhi, 1st Edition, 1999 (Reprint 2012). 4. James G, "Advanced Modern Engineering Mathematics", 3rd Edition, Pearson Education, 2004.									[9]	
Fourier Transform Techniques for Partial Differential Equations* Fourier transform: Definitions – Properties – Transform of elementary functions – Convolution theorem – Parseval's identity – Solutions to partial differential equations: Heat equation – Wave equation – Laplace and Poisson's equations. Total Hours (45+15) (Tutorial) 60 Text Book(s): 1. Jain M K, Iyengar S R K and Jain R K, "Numerical Methods: For Scientific and Engineering Computation", 8th Edition, New Age International Private Limited, New Delhi, 2022. 2. Sankara Rao K, "Introduction to Partial Differential Equations", 3rd Edition, Prentice Hall of India Pvt. Ltd., New Delhi, 2011. Reference(s): 1. Grewal B S, "Numerical methods in Engineering and Science, 11th Edition, Khanna Publishers, New Delhi, 2013. 2. Gupta A S, "Calculus of Variations with Applications", Prentice Hall of India Pvt. Ltd., New Delhi 1999. Rajasekaran S, "Numerical Methods in Science and Engineering: A Practical Approach", S.Chand& Co., New Delhi, 1st Edition, 1999 (Reprint 2012). 4. James G, "Advanced Modern Engineering Mathematics", 3rd Edition, Pearson Education, 2004.							to partie			
Fourier transform: Definitions – Properties – Transform of elementary functions – Convolution theorem – Parseval's identity – Solutions to partial differential equations: Heat equation – Wave equation – Laplace and Poisson's equations. Total Hours (45+15) (Tutorial) 60 Text Book(s): 1. Jain M K, Iyengar S R K and Jain R K, "Numerical Methods: For Scientific and Engineering Computation", 8th Edition, New Age International Private Limited, New Delhi, 2022. 2. Sankara Rao K, "Introduction to Partial Differential Equations", 3rd Edition, Prentice Hall of India Pvt. Ltd., New Delhi, 2011. Reference(s): 1. Grewal B S, "Numerical methods in Engineering and Science, 11th Edition, Khanna Publishers, New Delhi, 2013. 2. Gupta A S, "Calculus of Variations with Applications", Prentice Hall of India Pvt. Ltd., New Delhi 1999. Rajasekaran S, "Numerical Methods in Science and Engineering: A Practical Approach", S.Chand& Co., New Delhi, 1st Edition, 1999 (Reprint 2012). 4. James G, "Advanced Modern Engineering Mathematics", 3rd Edition, Pearson Education, 2004.					ntial Equatio	ns*				
Total Hours (45+15) (Tutorial) 60 Text Book(s): 1. Jain M K, Iyengar S R K and Jain R K, "Numerical Methods: For Scientific and Engineering Computation", 8th Edition, New Age International Private Limited, New Delhi, 2022. 2. Sankara Rao K, "Introduction to Partial Differential Equations", 3rd Edition, Prentice Hall of India Pvt. Ltd., New Delhi, 2011. Reference(s): 1. Grewal B S, "Numerical methods in Engineering and Science, 11th Edition, Khanna Publishers, New Delhi, 2013. 2. Gupta A S, "Calculus of Variations with Applications", Prentice Hall of India Pvt. Ltd., New Delhi 1999. 3. Rajasekaran S, "Numerical Methods in Science and Engineering: A Practical Approach", S.Chand& Co., New Delhi, 1st Edition, 1999 (Reprint 2012). 4. James G, "Advanced Modern Engineering Mathematics", 3rd Edition, Pearson Education, 2004.							s – Convolut	tion theorem	[0]	
Total Hours (45+15) (Tutorial) 60 Text Book(s): 1. Jain M K, Iyengar S R K and Jain R K, "Numerical Methods: For Scientific and Engineering Computation", 8th Edition, New Age International Private Limited, New Delhi, 2022. 2. Sankara Rao K, "Introduction to Partial Differential Equations", 3rd Edition, Prentice Hall of India Pvt. Ltd., New Delhi, 2011. Reference(s): 1. Grewal B S, "Numerical methods in Engineering and Science, 11th Edition, Khanna Publishers, New Delhi, 2013. 2. Gupta A S, "Calculus of Variations with Applications", Prentice Hall of India Pvt. Ltd., New Delhi 1999. Rajasekaran S, "Numerical Methods in Science and Engineering: A Practical Approach", S.Chand& Co., New Delhi, 1st Edition, 1999 (Reprint 2012). 4. James G, "Advanced Modern Engineering Mathematics", 3rd Edition, Pearson Education, 2004.	- Parse	val's identity – So	olutions to pa	artial differen	tial equations	s: Heat equa	tion – Wave	equation –	[9]	
Text Book(s): 1. Jain M K, Iyengar S R K and Jain R K, "Numerical Methods: For Scientific and Engineering Computation", 8th Edition, New Age International Private Limited, New Delhi, 2022. 2. Sankara Rao K, "Introduction to Partial Differential Equations", 3rd Edition, Prentice Hall of India Pvt. Ltd., New Delhi, 2011. Reference(s): 1. Grewal B S, "Numerical methods in Engineering and Science, 11th Edition, Khanna Publishers, New Delhi, 2013. 2. Gupta A S, "Calculus of Variations with Applications", Prentice Hall of India Pvt. Ltd., New Delhi 1999. 3. Rajasekaran S, "Numerical Methods in Science and Engineering: A Practical Approach", S.Chand& Co., New Delhi, 1st Edition, 1999 (Reprint 2012). 4. James G, "Advanced Modern Engineering Mathematics", 3rd Edition, Pearson Education, 2004.	Laplace	and Poisson's equ	uations.		•	•		·		
Jain M K, Iyengar S R K and Jain R K, "Numerical Methods: For Scientific and Engineering Computation", 8th Edition, New Age International Private Limited, New Delhi, 2022. Sankara Rao K, "Introduction to Partial Differential Equations", 3rd Edition, Prentice Hall of India Pvt. Ltd., New Delhi, 2011. Reference(s): 1. Grewal B S, "Numerical methods in Engineering and Science, 11th Edition, Khanna Publishers, New Delhi, 2013. 2. Gupta A S, "Calculus of Variations with Applications", Prentice Hall of India Pvt. Ltd., New Delhi 1999. Rajasekaran S, "Numerical Methods in Science and Engineering: A Practical Approach", S.Chand& Co., New Delhi, 1st Edition, 1999 (Reprint 2012). 4. James G, "Advanced Modern Engineering Mathematics", 3rd Edition, Pearson Education, 2004.						Total I	Hours (45+1	5) (Tutorial)	60	
 8th Edition, New Age International Private Limited, New Delhi, 2022. Sankara Rao K, "Introduction to Partial Differential Equations", 3rd Edition, Prentice Hall of India Pvt. Ltd., New Delhi, 2011. Grewal B S, "Numerical methods in Engineering and Science, 11thEdition, Khanna Publishers, New Delhi, 2013. Gupta A S, "Calculus of Variations with Applications", Prentice Hall of India Pvt. Ltd., New Delhi 1999. Rajasekaran S, "Numerical Methods in Science and Engineering: A Practical Approach", S.Chand& Co., New Delhi, 1st Edition, 1999 (Reprint 2012). James G, "Advanced Modern Engineering Mathematics", 3rd Edition, Pearson Education, 2004. 										
2. Sankara Rao K, "Introduction to Partial Differential Equations", 3 rd Edition, Prentice Hall of India Pvt. Ltd., New Delhi, 2011. Reference(s): 1. Grewal B S, "Numerical methods in Engineering and Science, 11 th Edition, Khanna Publishers, New Delhi, 2013. 2. Gupta A S, "Calculus of Variations with Applications", Prentice Hall of India Pvt. Ltd., New Delhi 1999. 3. Rajasekaran S, "Numerical Methods in Science and Engineering: A Practical Approach", S.Chand& Co., New Delhi, 1 st Edition, 1999 (Reprint 2012). 4. James G, "Advanced Modern Engineering Mathematics", 3 rd Edition, Pearson Education, 2004.	1	, , ,					entific and Er	ngineering Co	mputation",	
 New Delhi, 2011. Reference(s): Grewal B S, "Numerical methods in Engineering and Science, 11thEdition, Khanna Publishers, New Delhi, 2013. Gupta A S, "Calculus of Variations with Applications", Prentice Hall of India Pvt. Ltd., New Delhi 1999. Rajasekaran S, "Numerical Methods in Science and Engineering: A Practical Approach", S.Chand& Co., New Delhi, 1st Edition, 1999 (Reprint 2012). James G, "Advanced Modern Engineering Mathematics", 3rd Edition, Pearson Education, 2004. 	Ö									
Reference(s): 1. Grewal B S, "Numerical methods in Engineering and Science, 11 th Edition, Khanna Publishers, New Delhi, 2013. 2. Gupta A S, "Calculus of Variations with Applications", Prentice Hall of India Pvt. Ltd., New Delhi 1999. 3. Rajasekaran S, "Numerical Methods in Science and Engineering: A Practical Approach", S.Chand& Co., New Delhi, 1st Edition, 1999 (Reprint 2012). 4. James G, "Advanced Modern Engineering Mathematics", 3rd Edition, Pearson Education, 2004.			ntroduction to	o Partial Diffe	erential Equa	tions", 3 rd Ed	lition, Prentic	e Hall of Indi	a Pvt. Ltd.,	
 Grewal B S, "Numerical methods in Engineering and Science, 11th Edition, Khanna Publishers, New Delhi, 2013. Gupta A S, "Calculus of Variations with Applications", Prentice Hall of India Pvt. Ltd., New Delhi 1999. Rajasekaran S, "Numerical Methods in Science and Engineering: A Practical Approach", S.Chand& Co., New Delhi, 1st Edition, 1999 (Reprint 2012). James G, "Advanced Modern Engineering Mathematics", 3rd Edition, Pearson Education, 2004. 	New Deini, 2011.									
 2013. Gupta A S, "Calculus of Variations with Applications", Prentice Hall of India Pvt. Ltd., New Delhi 1999. Rajasekaran S, "Numerical Methods in Science and Engineering: A Practical Approach", S.Chand& Co., New Delhi, 1st Edition, 1999 (Reprint 2012). James G, "Advanced Modern Engineering Mathematics", 3rd Edition, Pearson Education, 2004. 					· · · · · · · · · · · · · · · · · · ·					
 Rajasekaran S, "Numerical Methods in Science and Engineering: A Practical Approach", S.Chand& Co., New Delhi, 1st Edition, 1999 (Reprint 2012). James G, "Advanced Modern Engineering Mathematics", 3rd Edition, Pearson Education, 2004. 	^{1.} 2013.									
 New Delhi, 1st Edition, 1999 (Reprint 2012). James G, "Advanced Modern Engineering Mathematics", 3rd Edition, Pearson Education, 2004. 										
 New Deini, 1st Edition, 1999 (Reprint 2012). James G, "Advanced Modern Engineering Mathematics", 3rd Edition, Pearson Education, 2004. 		Rajasekaran S, "Numerical Methods in Science and Engineering: A Practical Approach", S.Chand& Co.							nand& Co.,	
	1									
				ngineering M	athematics", :	3 rd Edition, Po	earson Educ	ation, 2004.		

^{*}SDG 4 – Quality Education

	ontents and Lecture Schedule	No. of
S. No.	Topics	hours
1.0	Eigenvalue Problems	
1.1	Solution of system of linear equation by Gauss Seidal iterative method	2
1.2	Eigen value and eigen vector by iterative methods: Power method	2
1.3	Jacobi method	2
1.4	Given's method	2
1.5	House holder method	2
1.6	Tutorial	2
2.0	Regression Analysis	<u>.</u>
2.1	Curve fitting by the method of least squares	2
2.2	Fitting a curve of the form $y = ax^b$ and $y = ae^{bx}$	2
2.3	Interpolation: polynomial approximation	2
2.4	Lagrange's method	2
2.5	Newton's method	2
2.6	Tutorial	2
3.0	Calculus of Variations	<u>.</u>
3.1	Concept of variation and its properties	1
3.2	Euler's equation	2
3.3	Functional dependent on first and higher order derivatives	2
3.4	Functionals dependent on functions of several independent variables	1
3.5	Variational problems with moving boundaries	1
3.6	Isoperimetric problems	1
3.7	Ritz method	2
3.8	Tutorial	2
4.0	Laplace Transform Techniques for Partial Differential Equations	
4.1	Laplace transform: Definitions – Properties	1
4.2	Dirac delta function – Unit step functions	2
4.3	Convolution theorem	2
4.4	Inverse Laplace transform: Complex inversion formula	1
4.5	Solutions to partial differential equations: Heat equation	2
4.6	Solutions to partial differential equations: Wave equation	2
4.7	Tutorial	2
5.0	Fourier Transform Techniques for Partial Differential Equations	
5.1	Fourier transform: Definitions – Properties	1
5.2	Transform of elementary functions	1
5.3	Convolution theorem – Parseval's identity	1
5.4	Solutions to partial differential equations: Heat equation	2
5.5	Solutions to partial differential equations: Wave equation	2
5.6	Laplace's equation	2
5.7	Poisson's equation	1
5.8	Tutorial	2

Course Designer(s)
1. Dr.D.Tamizharasan -tamizharasan@Ksrct.Ac.In

70 PSE102	Theory of Elasticity and	Category	L	T	Р	Credit
70 P3E102	Plasticity	PC	3	1	0	4

- To understand the concepts of stresses, strains and stress-strain relationships, basic theory of elasticity and failure criteria.
- To expose the two dimensional problems in Cartesian and polar coordinates.
- To make familiar with problem formulations and solution techniques.
- To familiarize with the principle of torsion of prismatic bars of non circular sections.
- To Learn different energy methods and also basics of plasticity.

Pre-requisites

Fundamentals of Mathematics, knowledge of basic Science

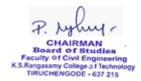
Course Outcomes

On the successful completion of the course, students will be able to

CO1	Understand the equilibrium equation and stress-strain relationship with various	Analyse
COT	Coordinate Systems.	
CO2	Analyse the problem with bi-harmonic equations.	Analyse
CO3	Identify the different approaches for solving the torsional problems and thin	Analyse
CO3	walled open and closed sections	
CO4	Analyse the elasticity problems with various energy methods.	Analyse
CO5	State the assumptions of plasticity and solve plastic problems.	Apply

Mapping	Mapping with Programme Outcomes									
COs		POs								
COS	1	2	3	4	5	6				
CO1	3	3	2	2	3	-				
CO2	3	3	3	2	3	3				
CO3	2	3	3	3	2	2				
CO4	2	2	3	3	2	1				
CO5	2	3	2	3	2	2				
3 - Stror	3 - Strong; 2 - Medium; 1 - Some									

Assessment Pattern								
Bloom's Category	Continuous Assess	sment Tests (Marks)						
Biodili S Calegory	1	2	End Sem Examination (Marks)					
Remember	10	10	20					
Understand	10	10	20					
Apply	20	20	30					
Analyse	20	20	30					
Evaluate	=	-	-					
Create	=	-	-					
Total	60	60	100					



Syllabus									
	K	.S.Rangasar	ny College o	of Technolog	y – Autonoi	mous R2022			
	M.E – Structural Engineering								
				ry of Elastic	ity and Plas	ticity			
Semester		Hours/Week		Total	Credit	Ma	Maximum Marks		
Jennester	L	T	P	Hours	С	CA	ES	Total	
	3	1	0	60	4	40	60	100	
Elasticity	t			0				[0]	
	tress and stra Generalized I		n equations -	- Compatibilit	y equations -	- stress strair	ו	[9]	
Elasticity So		TOOKE 5 IAW.							
•	and plane str	ain problems	-Two dimens	sional probler	ns in Cartesi	an and Polar	co-	[9]	
ordinates - A	iry's stress fu	nction – Bi ha	irmonic equa	tion – Saint V	/enant's prind	ciple.		[-]	
	lon Circular								
	ipproach – Pr	andtl's appro	ach – membr	ane analogy	 Torsion of 	thin walled op	pen and	[9]	
closed section									
Energy Met		. 6 . 1 Cata at 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1	,	u			1:66	101	
	y - Principle plication to ela			ineorem - R	ayleign Ritz	method-finite	e aimerence	[9]	
Plasticity	plication to ela	asticity proble	:1115.						
	sumption – Y	ield criteria -	Yield surfac	e Flow rule	– Plastic s	tress strain r	elationshin-	[9]	
	stic problems					a coo ca a a a	oldilonomp	[~]	
	•	<u> </u>				Total Ho	urs (45+15)	60	
Text Book(s	s):								
1. Sadh	u singh," Theo	ory of Elastici	ty", Khanna F	Publishers, Ne	ew Delhi, 201	13.			
2. Sadh	2. Sadhu singh," Theory of Plasticity", Khanna Publishers, New Delhi, 2011.								
Reference(s	s):								
1. S. Tir	noshenko.S a	nd J.N Goodi	er.," Theory	of Elasticity",	Mc Graw Hill	Book Co., N	ew York, 2010		
	2. H Jane Helena, "Theory of Elasticity and Plasticity", PHI Learning Pvt. Ltd., 2016.								
	rinath, "Advar	nced Mechan	cs of Solids",	, Tata McGra	w Hill, New D	Delhi, Third E	dition, 2011		
4. Sadh	4. Sadhu singh, "Applied Stress Analysis", Khanna Publishers, New Delhi, 2007.								

Course Co	ontents and Lecture Schedule	
S. No.	Topics	No. of hours
1.0	Elasticity	
1.1	Analysis of stress and strain in 2D and 3D system - Introduction	1
1.2	Longitudinal Vibrations Equation of motion, SDOF analysis	1
1.3	Equation of Equilibrium – 2D (Cartesian & Polar coordinate system) & Problems	1
1.4	Equation of Equilibrium - 3D (Cartesian system) & Problems	2
1.5	Compatibility equation	1
1.6	Analysis of stress – 2D(Cartesian & Polar coordinate system) & Problems	1
1.7	Analysis of strain – 2D(Cartesian & Polar coordinate system) & Problems	1
1.8	Specification of stress and strain –2D & 3D & Problems	1
1.9	Generalized Hook's law, Stress-Strain relationship- Mohr Circle	2
2.0	Elasticity Solution	
2.1	Plane Stress and Plane Strain Problems.	1
2.2	Derivation of Airy's stress functions in cartesian coordinate system	2
2.3	Derivation of Airy's stress functions in polar coordinate system	2
2.4	Application of Airy's stress functions	2
2.5	Problems in airy's stress functions	2
2.6	Thick cylinders under uniform pressure	1
2.7	Bi harmonic equation	1
2.8	Saint Venant's principle	1
2.9	Shrink & Force fit & Problems	2
2.10	Problem	2
3.0	Torsion of Non Circular Section	
3.1	Torsion of non-circular by St. Venant's approach	2
3.2	Torsion of circular Prismatic bar by St. Venant's approach	2
3.3	Torsion of non-circular by Prandtl approach & Problems	2
3.4	Torsion of Prismatic bar by Prandtl approach & Problems	2
3.5	Membrane analogy of torsion of Closed section	2
3.6	Torsion of thin walled open and closed sections	2
4.0	Energy Methods	
4.1	Introduction to energy theorem	1
4.2	Strain Energy for 2D & 3D stress system	1
4.3	Complimentary energy theorem	1
4.4	Principle of Virtual Work	1
4.5	Energy theorem	1
4.6	Rayleigh Ritz method	1
4.7	Finite difference method	1
4.8	Engesser's theorem &Castingliano's theorem	1
	Problems in energy method	2
5.0	Plasticity	
5.1	Physical assumption	1
5.2	Yield criteria and Yield surface	2
5.3	Plastic stress strain relations, Flow rule	2
5.4	Tresca criteria & Problems	2
5.5	Von mises criteria & Problems	2
5.6	Plastic problems in bending	1
5.7	Plastic problems in Torsion	1
5.8	Plastic problems in Thick cylinders	1

Course Designer(s)

1. Dr.J.Abdul Bari - abdulbari@ksrct.ac.in

70 PSE 103	Structural Dynamics and	Category	L	T	Р	Credit
70 P3E 103	Earthquake Engineering	PC	3	1	0	4

- To know the fundamentals of vibrations of SDOF system
- To gain knowledge on free and forced vibration of MDOF system
- To understand the basic principles of dynamics, different methods of multi degree of freedom system and their dynamic response, modeling
- To evaluate the free and forced vibration analysis of continuous system
- To know the practical applications of structural dynamics

Pre-requisites

Fundamentals of Mathematics, knowledge of basic Science

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Analyse the single degree of freedom with free vibration.	Analyse
CO2	Analyse the single degree of freedom forced vibration with harmonic	Analyse
CO3	excitation. Analyse the two degree of freedom with free vibration.	Analyse
CO4	Analyse the Multi degree of freedom with free and forced vibration.	Analyse
CO5	Apply the principle of vibration to the sub structure design	Apply

Mapping v	Mapping with Programme Outcomes									
COs		POs								
COS	1	2	3	4	5	6				
CO1	2	2	3	2	2	3				
CO2	-	-	3	-	2	3				
CO3	2	2	3	2	2	3				
CO4	-	-	3	-	2	3				
CO5	1	1	3	2	3	3				
3 - Strong	3 - Strong; 2 - Medium; 1 - Some									

Assessment Pattern									
Bloom's	Continuous Asses	sment Tests (Marks)							
Category	1	2	End Sem Examination (Marks)						
Remember	10	10	20						
Understand	10	10	20						
Apply	20	20	30						
Analyse	20	20	30						
Evaluate	-	-	-						
Create	-	-	-						
Total	60	60	100						

Syllab	us								
	K.S.Rangasamy College of Technology – Autonomous R2022								
	M.E – Structural Engineering								
				tructural Dy	namics and	Earthquake			
Seme	stor		Hours/Week		Total	Credit	M	aximum Mark ES	
Seine	3161	L	T	Р	Hours	С	CA	Total	
I		3	1	0	60	4	40	60	100
Principles of Vibration Analysis Equations of Motion by equilibrium and energy methods, Free & Forced vibration of single degree of						degree of	[9]		
				ransmissibilit	У				
Formul	ation o		roperty matr	ices - Eigen v onormality of		ns – problems	s on two degi	ree of	[9]
Dynamic Analysis of Multi Degree of Freedom Multi degree of freedom systems, Orthogonality of normal modes, approximate methods- Dunkerly's method Holzer method- Stodola method-Rayleigh's method- Rayleigh Ritz method-Mode superposition technique Numerical integration techniques					[9]				
Free a	nd force		of continuous	/stems system –Ray ng virtual wor		ethod – formı	ulation using		[9]
Idealiza	ation o	oplications of multi-store principles of		s – Impact	loading - b	last loading	- aerodyna	amics, gust	[9]
			•				Total Ho	urs (45+15)	60
Text B	ook(s)	:							
1.	Madhu	ijith Mukhopa	dhyay "Struc	tural Dynami	cs (Vibration	& systems)"	,Ane books F	Pvt.Ltd, 2015.	
2.	2. M Paz, " Structural Dynamics-Theory and Computation", Springer, 2007.								
Reference(s):									
	1. Anil K Chopra, "Dynamics of Structures – Theory and Applications to Earthquake Engineering", Prentice Hall, New Delhi, 2007.						', Prentice		
							2011.		
3.	RWC	lough and J l	Penzien, "Dy	namics of Str	uctures", Mc	Graw Hill Boo	ok Co. Ltd, 20	003.	
4.	J L Hu	mar, "Dynam	ics of Structu	ures", Prentic	e H <mark>all on Indi</mark>	a Pvt. Ltd, 20	000.		

S. No.	Topics	No. of hours
1.0	Principles of Vibration Analysis	•
1.1	Free vibration of single degree of freedom systems, Simple Harmonic motion	1
1.2	Longitudinal Vibrations Equation of motion, SDOF analysis	1
1.3	Undamped SDOFs- dynamic equation of motion with electrical equivalent	1
1.4	Tutorial	2
1.5	Newtons law of motion, D'Alemberts principle- equivalent stiffness	1
1.6	Springs are connected in series and parallel, frequency and period, problems	1
1.7	Amplitude of motion, Energy method for the equation of motion	1
1.8	Damped SDOFs- underdamped, overdamped and critically damped	1
1.9	Logarithmic decrement ,method of determining damping	1
1.10	Tutorial	2
2.0	Multi Degree of Freedom System	ı
2.1	Forced vibration of single degree of freedom system	1
2.2	Undamped harmonic excitation	2
2.3	Damped harmonic excitation with electrical equivalent	1
2.4	Tutorial	1
2.5	Response to support motion Torsional vibration and Dynamic Magnification Factor	2
2.6	Impulsive loading problems using Fourier series	1
2.7	Forced vibration problems using Laplace transform method	1
2.8	Numerical evaluation of Duhamel's integral for damped system	2
2.9	Tutorial	2
3.0	Dynamic Analysis of Multi Degree of Freedom	
3.1	Two degrees of freedom	2
3.2	Principle modes of vibration and equation of motion for two degree of freedom	2
3.3	Two degrees of freedom for torsional system, Vibrations of undamped Two degrees of freedom	2
3.4	Tutorial	2
3.5	Forced Vibrations and Undamped forced vibration for two degrees of freedom	2
4.0	Multi Degree of Freedom	ı
4.1	Stiffness, mass, damping matrices and Influence Coefficient	2
4.2	Modal analysis – damped undamped free vibration	2
4.3	Matrix Method and Matrix Iteration Method	2
4.4	Tutorial	2
4.5	Dunkerleys ,Stodola's , Rayleigh's and Holzer Method	2
4.6	Dynamic analysis method to evaluate lateral forces, Static and dynamic condensation	2
4.7	Tutorial	2
5.0	Vibration Analyse in Sub Structure	ı
5.1	Base Isolation and design of bearings	2
5.2	Machine foundation- types , basic and design criteria	2
5.3	MSD Method of analysis	2
5.4	Tutorial	2
5.5	EHS Method of Analysi	1
5.6	Tschebotarioff's reduced frequency method- design problems	2

1. Dr.K.VijayaSundravel - vijayasundravel@ksrct.ac.in

70 PIS 001	Research Methodology and	Category	L	Т	Р	Credit
	IPR	PC	3	0	0	3

- To understand the principles of research process.
- To develop knowledge in analytical skills for collection of research data.
- To understand the procedure in the preparation of reports.
- To accomplish basic idea about the process involved in intellectual property rights.
- To enlighten the process of patent filing.

Pre-requisites

NIL

Course Outcomes

On the successful completion of the course, students will be able to

CO1	To understand the research process and design.	Analyse
CO2	To gain the knowledge about sources and collection of research data	Analyse
CO3	To understand the procedure of data analysis, preparation of reports and checking plagiarism	Analyse
CO4	To gain the knowledge on Trade mark and functions of UNESCO in IPR	Analyse
CO5	To enlighten the benefits, E-filing and Examinations related to patents	Apply

Mapping with Programme Outcomes

Cos	Pos								
Cos	1	2	3	4	5	6			
CO1	3	3	2	2	2	2			
CO2	3	3	2	2	2	2			
CO3	3	3	2	2	2	2			
CO4	3	3	2	2	2	2			
CO5	3	3	2	2	2	2			
3 - Strong; 2 - Medium; 1 – Some									

Assessment Pattern			
Plaamia Catagory	Continuous Asses	sment Tests (Marks)	End Sem Examination (Marks)
Bloom's Category	1	2	
Remember	10	10	20
Understand	10	10	20
Apply	20	20	30
Analyse	20	20	30
Evaluate	-	-	-
Create	-	-	-
Total	60	60	100

Syllab	Syllabus								
	K.S.Rangasamy College of Technology – Autonomous R2022								
	Common to all Branches								
	70 PIS 001 - Research Methodology and IPR								
Seme	netor		Hours/Week		Total	Credit	Credit Maximum Marks		(S
Seille	estei	L	Т	Р	Hours	С	CA	ES	Total
I	I 3 0 0 60 3 40 60								100
	earch D	•			f O				
							tory data to		[9]
		stion, Qualita dium and Jou					nd Surveys,	Selection of	
		tion and Sou		callon, mans	iation of Nest	saicii			
				Ouestionnair	es and Instru	ıments Sam	pling and me	thods Data	[0]
		Exploring, exa			es and mand	inienis, Gain	ping and me	tillous. Data	[9]
				alopidying.					
		s and Repor			ation and M		A i - ti	Dracantina	
							Association. Plagiarism, F		[9]
		ındırıgs usırıç ınd Misrepres		oris and oral	presentation.	Checks for i	Piagialisili, F	aisilication,	
		Property Rig							
				of IPR Evol	ution and de	evelopment	of concept of	of IPR IPR	
							le of WIPO a		[9]
							es and Feat		[0]
		rademark, Fu							
Pater		,							
Patent	ts – obj	ectives and b	enefits of pa	itent, Concep	t, features of	patent, Inve	entive step, S	pecification,	
Types	of pat	ent application	on, process	E-filling, Exa	mination of	patent, Gran	it of patent,	Revocation,	[9]
Equita	ble As	signments, Li	cences, Lice	nsing of rela	ted patents,	patent agent	ts, Registration	on of patent	
agents	S.								
							7	Total Hours	45
Text E	Book(s)								
1.		I. Bainbridge							
2.				amela S and	Sharma JK,	"Business R	Research Met	hods", Tata M	lcGraw Hill
		tion, 11e (20	12).						
	ence(s)								
1.								imited, INDIA,	
2.			a, "Intellectu	aı property: F	atents, I rad	emarks, Cop	yrıghts, I rad	e Secrets", Er	ıtrepreneur
	Press, 2007								
3.	David	Hurit, Long N	iguyen, Matti	C Rodbala	, Palent seal	roning: tools	∆ lecriniques √ l	otice" Oxford	Liniversity
4.			nankanala K	.c., Kadnakr	ısıman V., "Ir	iulan Patent	Law and Pra	actice", Oxford	University
	Press, 2010. Richard Stim, "Patent, Copyright & Trademark - An Intellectual Property Desk Reference", NOLO								
5.			iterit, Copyri	yn a made	emark - An	menectual	Property D	esk Kelelelic	e, NOLO
		hers, 2020.	mpany Socr	etaries of Inc	dia Statuton	, body updo	r an Act of r	parliament, "P	rofessional
6.								Janianieni, P	ioicaaluiidi
б.		amme Intelled						, -	

Course Contents and Lecture Schedule

S. No.	Topics	No. of hours
1.0	Research Design	
1.1	Overview of research process and design	1
1.2	Use of Secondary and exploratory data to answer the research question	2
1.3	Qualitative research	1
1.4	Observation studies	1
1.5	Experiments and Surveys	1
1.6	Selection of the Right Medium and Journal for publication	2
1.7	Translation of Research	1
2.0	Data Collection and Sources	
2.1	Measurements, Measurement Scales	2
2.2	Questionnaires and Instruments	2
2.3	Sampling and methods	2
2.4	Data - Preparing, Exploring, examining and displaying	1
3.0	Data Analysis and Reporting	
3.1	Overview of Multivariate analysis	1
3.2	Hypotheses testing and Measures of Association	1
3.3	Presenting Insights	2
3.4	Findings using written reports and oral presentation	1
3.5	Checks for Plagiarism	2
3.6	Falsification	1
3.7	Fabrication, and Misrepresentation	1
4.0	Intellectual Property Rights	
4.1	Intellectual Property – The concept of IPR	1
4.2	Evolution and development of concept of IPR, IPR development process	1
4.3	Trade secrets, utility Models, IPR & Bio diversity	1
4.4	Role of WIPO and WTO in IPR establishments	2
4.5	Right of Property, Common rules of IPR practices	1
4.6	Types and Features of IPR Agreement, Trademark, Functions of UNESCO in IPR maintenance	2
5.0	Patents	
5.1	Patents – objectives and benefits of patent, Concept, features of patent	1
5.2	Inventive step, Specification, Types of patent application	1
5.3	Process E-filling, Examination of patent	1
5.4	Grant of patent, Revocation	2
5.5	Equitable Assignments, Licences, Licensing of related patents	1
5.6	Patent agents, Registration of patent agents	1

Course Designer(s)

Dr.A.Murugesan – murugesana@ksrct.ac.in

70 PAC 001	English for Research Paper Writing	Category	L	Т	Р	Credit
	9	PC	2	0	0	0

- Teach how to improve writing skills and level of readability
- Tell about what to write in each section
- Summarize the skills needed when writing a Title
- Infer the skills needed when writing the Conclusion
- Ensure the quality of paper at very first-time submission

Pre-requisites

-NIL-

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Understand that how to improve your writing skills and level of readability	Apply
CO2	Learn about what to write in each section	Analyse
CO3	Understand the skills needed when writing a Title	Understand
CO4	Understand the skills needed when writing the Conclusion	Analyse
CO5	Ensure the good quality of paper at very first-time submission	Apply

Mapping with Programme Outcomes

Coo	Pos								
Cos	1	2	3	4	5	6			
CO1	3	3	2	2	3	1			
CO2	3	3	2	2	3	1			
CO3	3	3	2	2	3	1			
CO4	3	3	2	3	2	1			
CO5	3	3	2	3	2	1			
3 - Strong	3 - Strong; 2 - Medium; 1 – Some								

Assessment Pattern

Plaamia Catagory	Continuous Assessment Tests (Marks)				
Bloom's Category	1	2			
Remember	30	30			
Understand	30	30			
Apply	40	40			
Analyse	-	-			
Evaluate	-	-			
Create	-	-			
Total	100	100			

Syllabus								
	K.S.Rangasamy College of Technology – Autonomous R2022							
			M.E - Str	uctural Engi	neering			
		70 PAC	001 - Englis	h for Resea	rch Paper V	Writing		
Semeste	Hours/Week Total Credit Maximum Marks						S	
Semeste	L	Т	Р	Hours	С	CA	ES	Total
II	2	0	0	30	0	40	60	100
Planning a	tion to Researd nd Preparation, , Being Concise	Word Order,	Breaking up					[6]
Present Clarifying	wition Skills Who Did Wha , Sections of a l	t, Highlighting	g Your Findi	ngs, Hedgin				[6]
Key skills are neede	ting Skills are needed whold when writing Results, Discuss	ı an Introduc	tion, skills n	eeded when				[6]
Result V Skills are	/riting Skills needed when w	riting the Met	hods, skills n	eeded when		Results, skills	are needed	[6]
Verifica	ion Skills ases, checking	-				ould possibly	be the first	[6]
						-	Total Hours	30
Text Boo	(s):							
1. Ad 20	ian Wallwork, E 1	English for W	riting Resear	ch Papers, S	Springer New	/ York Dordre	echt Heidelber	g London,
	Reference(s):							
	, , , , , , , , , , , , , , , , , , ,							
	2. Highman N, Handbook of Writing for the Mathematical Sciences, SIAM. Highman's book 1998.							
	ll Williams, Adva						018	
4. Su	4. Sudhir S. Pandhye, English Grammar and Writing Skills, Notion Press, 2017.							

Course Contents and Lecture Schedule

S. No.	Topics	No. of hours
1.0	Introduction to Research Paper Writing	
1.1	Planning and Preparation, Word Order	2
1.2	Breaking up long sentences, Structuring Paragraphs and Sentences	1
1.3	Being Concise and Removing Redundancy	2
1.4	Avoiding Ambiguity and Vagueness	1
2.0	Presentation Skills	
2.1	Clarifying Who Did What, Highlighting Your Findings	2
2.2	Hedging and Criticizing	2
2.3	Paraphrasing and Plagiarism, Sections of a Paper	1
2.4	Abstracts, Introduction	1
3.0	Title Writing Skills	
3.1	Key skills are needed when writing a Title	1
3.2	Key skills are needed when writing an Abstract, key skills are needed when writing an Introduction	2
3.3	Skills needed when writing a Review of the Literature	2
3.4	Methods, results, discussion, conclusions, the final check	1
4.0	Result Writing Skills	1
4.1	Skills are needed when writing the Methods	2
4.2	Skills needed when writing the Results	1
4.3	Skills are needed when writing the Discussion	1
4.4	Skills are needed when writing the Conclusions	2
5.0	Verification Skills	•
5.1	Useful phrases	2
5.2	Checking Plagiarism	2
5.3	How to ensure paper is as good as it could possibly be the first time submission	2

Course Designer

Dr.A.Palaniappan – <u>palaniappan@ksrct.ac.in</u>

70 PSE 1P1	Advanced Concrete	Category	L	T	Р	Credit
	Technology Laboratory	PC	0	0	4	2

- To design concrete mixes using industrial by-products for sustainable construction
- To assess the workability and flow properties of self-compacting concrete
- To evaluate the mechanical properties of fiber-reinforced concrete
- To analyze the durability of concrete through water, acid, and sulfate resistance tests
- To perform non-destructive tests for quality assessment of concrete structures

Pre-requisites

• Courses - Concrete Technology

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Design concrete mixes using industrial by-products to enhance sustainability	Apply
CO2	Evaluate the workability and flow properties of self-compacting concrete	Analyse
CO3	Determine the mechanical properties of fiber-reinforced concrete	Apply
CO4	Assess the durability of concrete through chloride, acid, and sulfate resistance tests.	Apply
CO5	Performnon-destructive testing to ensure concrete quality and strength	Apply

Mapping with Programme Outcomes

Cos	Pos								
Cos	1	2	3	4	5	6			
CO1	3	-	-	3	2				
CO2	3	-	-	3	2				
CO3	3	-	-	3	2				
CO4	3	-	-	3	2				
CO5	3	-	-	3	2				
3 - Strong	; 2 - Medium; 1 –	Some							

Assessment Pattern

Bloom's Category	Lab Experiments A	ssessment (Marks)	Model Examination	End Sem
Bloom's Category	Lab	Activity	(Marks)	Examination (Marks)
Remember	-	-	-	-
Understand	-	-	-	-
Apply	25	12	50	
Analyse	25	13	50	
Evaluate	-	-	-	-
Create	-	-	-	-
Total	50	25	100	-

Rangasamy College of Technology – Autonomous R2022								
M.E – Structural Engineering								
70 PSE 1P1 - Advanced Concrete Technology Laboratory								
Semester	Hours/Week			Total Hrs	Credit	Max	ximum Marks	8
Semester	L	Т	Р	rotal Hrs	С	CA	ES	Total
I	0	0	4	60	2	60	40	100

List of Experiments:

- 1. Perform mix design for concrete with industrial by-products
- 2. Perform slump flow test on self-compacting concrete
- 3. Perform L Box test for self-compacting concrete
- 4. Determine the mechanical properties of fibre reinforced concrete specimens
- 5. Determine the young's modulus of fibre reinforced concrete specimens
- 6. Perform the Water Absorption Test on Concrete.
- 7. Determine the amount of chloride content present in sample of concrete
- 8. Perform the Acid resistance test on concrete
- 9. Perform the sulphate resistance test on concrete
- 10. Perform non-destructive test on concrete

Refer	Reference(s)						
1.	"Advanced Concrete Technology - Lab Manual", Department of Civil Engineering, KSRCT.						
2.	IS: 10262 – 2019, Concrete Mix Proportioning - Guidelines (Second Revision)						
3.	A R Santhakumar, "Concrete Technology, Oxford Higher Education, New Delhi, 2018						
4.	IS 516 – Method of Test for Strength of Concrete -Specification BIS, New Delhi						

Course Designer(s)

1.Mr.K. Angu Senthil – angusenthil@ksrct.ac.in

70 PSE 1P2	Technical Seminar	Category	L	Т	Р	Credit	
70 F3E 1F2	recimical Seminal	CG	0	0	2	1	

- To encourage the students to study advanced engineering developments.
- To prepare and present technical reports.
- To encourage the students to use various teaching aids such as overhead projectors, power point presentation and demonstrative models.
- To enrich the communication skills of the student and presentations of technical topics of interest, this course is introduced.
- To encouraged the students to use various teaching aids such as overhead projectors, power point presentation and demonstrative models.

Prerequisite

Basic knowledge about Civil Engineering Topics.

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Establish motivation for any topic of interest and develop a thought process for technical presentation.	Analyse
CO2	Organize a detailed literature survey and build a document with respect to technical presentations.	Analyse
CO3	Analysis and comprehension of proof-of-concept and related data.	Analyse
CO4	Effective presentation and improve soft skills.	Analyse
CO5	Make use of new and recent technology (e.g. graphical abstract) for creating technical reports.	Apply

Mapping with Programme Outcomes

Cos	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	2	3	2	3
CO2	3	3	3	2	2	2
CO3	3	3	2	3	2	2
CO4	3	3	2	2	2	2
CO5	3	3	2	3	3	3

	K.S.Rangas	R2022						
70 PSE 1P2-TECHNICAL SEMINAR								
M.E. STRUCTURAL ENGINEERING								
Semester	Hours/Week			Total hrs	Credit	N	/laximum l	Marks
Gerriester	L	T	Р	Total IIIS	С	CA	ES	Total
l	0	0	2	30	1	100	-	100

The students will work for two hours per week guided by a group of staff members. They will be asked to talk on any topic of their choice related to Structural Engineering and to engage in dialogue with the audience.

A brief copy of their talk also should be submitted. Similarly, the students will have to present a seminar of not less than fifteen minutes and not more than thirty minutes on the technical topic.

They will also answer the queries on the topic. The students as the audience also should interact.

Evaluation will be based on the technical presentation and the report and also on the interaction during the seminar.

Total Hours 30

Course Designers

1. Dr.S.Gunasekar

-gunasekar@ksrct.ac.in

70 PSE 201	Advanced Steel Design	Category	L	T	Ρ	Credit
70 F3E 201		PC	3	0	0	3

- To know about the analysis and design of steel structures.
- To understand about the different types of steel connections
- To know about the analysis and design of cold formed steel structures
- To understand the analysis and design of special steel structures
- To demonstrate advanced design philosophies and concepts.

Pre-requisites

Courses - Strength of Materials, Design of Steel Structures

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Assess the general behaviour of beam –column employ them to design beam-column – crane column.	Analyse
CO2	Classify the different types of connection and identity suitable connections to apply for required situation.	Analyse
CO3	Analyse the cold formed steel sections and design them.	Analyse
CO4	Evaluate the various forces acting on self-supporting chimney guyed steel chimney and design them.	Analyse
CO5	Calculate the base shear and employ them to design a structure.	Apply

Mapping with Programme Outcomes

Coo	Pos									
Cos	1	2	3	4	5	6				
CO1	3	2	3	3	3	2				
CO2	3	3	3	3	3	3				
CO3	3	3	3	3	3	3				
CO4	3	3	3	3	3	2				
CO5	3	3	3	3	3	3				
3 - Stron	g; 2 - Medium;	1 – Some								

Assessment Patt	ern		
Bloom's		ssessment Tests arks)	End Sem Examination (Marks)
Category	1	2	
Remember	10	10	20
Understand	10	10	20
Apply	20	20	30
Analyse	20	20	30
Evaluate	-	-	-
Create	-	-	-
Total	60	60	100

Syllabus								
	K.S.I	Rangasamy			gy – Auton	omous R2	2022	
				ictural Eng				
					Steel Desig			
Semester		Hours/Week Total Credit Maximum Ma						
	L	T	Р	Hours	C	CA	ES	Total
	3	0	0	45	3	40	60	100
Introduction Design of b		Behaviour on ns-Beams o	of beam co column subj		column ur			[9]
Connection stiffened a connection	n Behaviour and stiffene – Tee St ents – des	– Design d Seat co ub and Ei	Requiremer nnection – nd plate c	Framed onnections	d and weld connection —Column plateco	Moment Stiffeners	t resistant and other	[9]
Types of compression Combined studs.	Combined stresses and connections – Empirical design of Z –Purlins with lips and wall						[9]	
	nd Design elf-supporti				s-Design of	bunkers ar	nd silos.	[9]
Design of self-supporting chimney and guyed steel stacks-Design of bunkers and silos. Seismic Design of Steel Structures Base shear calculations –IS 1893-2002,codal provisions – Design and detailing-IS 800-2007(Theory only)						[9]		
,	• • •					To	tal Hours	45
	Text Book(s):							
1. Subramaniam.N., "Design of Steel Structures ",(As per IS 800-2007),Oxford University Press, 2014.								
2. Bhavikatti SS, "Design of Steel Structures", I.K.International Publishing House Pvt. Ltd 2012								
Reference(s):								
1. Duggal S K., "Limit State Design of Steel Structures, Tata McGraw Hill, New Delhi, 2014.								
2. S.Ramachandra "Design of Steel Structures" Standard Publications, New Delhi,2011								
	 Teaching Resources for Structural Steel Design, INSDAG, Kolkatta. Design of Steel Structure, Punmia B.C, Jain Ashok K.R, Jain Arun K.R, Lakshmi Publishers, 							
4. Design	_	Structure, I	Punmia B.C	C, Jain Asho	ok K.R, Jair	n Arun K.R.	, Lakshmi F	Publishers,

Course Contents and Lecture Schedule

S. No.	Topics	No. of hours				
1.0	Analysis and Design of Beam Column					
1.1	Introduction-General Behaviour of beam column	1				
1.2	Beam column under bi-axial loading	2				
1.3	Design of beam	2				
1.4	Columns-Beams column subjected to tension	1				
1.5	Bending-crane column	2				
2.0	Behaviour and Design of Joints					
2.1	Connection Behaviour	1				
2.2	Design Requirements of Bolted and welded Connection	1				
2.3	Un stiffened and stiffened Seat connection – Framed connection	1				
2.4	Moment resistant connection – Tee Stub and End plate connections	1				
2.5	Column Stiffeners and other reinforcements	1				
2.6	Design of moment resistant base plate	2				
2.7	Concept of semi rigid connections.					
3.0	Analysis and Design of Cold Formed Steel Structures					
3.1	Types of cross sections	1				
3.2	Concept of local buckling and effective width	1				
3.3	Design of compression and tension members	1				
3.4	Tutorial	2				
3.5	Concept of lateral buckling	1				
3.6	Design of beams-Combined stresses and connections	1				
3.7	Empirical design of Z.	1				
3.8	Purlins with lips and wall studs.	2				
4.0	Analysis and Design of Special Structures					
4.1	Design of self-supporting chimney.	3				
4.2	Guyed steel stacks.	3				
4.3	Design of bunkers.	3				
4.4	Design of silos.	3				
5.0	Seismic Design of Steel Structures					
5.1	Base shear calculations	3				
5.2	IS 1893-2002,codal provisions	3				
5.3	Design and detailing-IS 800-2007(Theory only)					

Course Designer

1. Dr.M.Velumani - velumani@ksrct.ac.in

	Advanced Beinforced	Category	L	T	Р	Credit
70 PSE 202	Advanced Reinforced Concrete Design	PC	3	0	0	3

- To apply various limit states and design beams & columns
- To learn the design of special RC elements
- To perform the design of flat slab and grid floors
- To study the inelastic behavior of RC beams
- To gain knowledge in detailing codes

Pre-requisites

Courses -Structural Analysis &RCC Design

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Design the elements under flexure, shear, torsion and compression	Analyse
CO2	Perform the design of special RC elements	Analyse
CO3	Learn the design of flat slabs and grid floors	Analyse
CO4	Analyse the inelastic behavior of RC beams	Analyse
CO5	Draw the reinforcement detailing of structural elements	Apply

Mapping	Mapping with Programme Outcomes								
Cos		Pos							
Cos	1	2	3	4	5	6			
CO1	3	3	3	3	2	2			
CO2	3	3	3	3	2	2			
CO3	3	3	3	3	2	2			
CO4	3	3	2	3	2	2			
CO5	3	2	3	2	2	2			
3 - Strong; 2 - Medium; 1 – Some									

Assessment Pattern							
Bloom's Category	Continuous Assess	sment Tests (Marks)	End Sem Examination (Marks)				
Biodili S Calegory	1	2					
Remember	10	10	20				
Understand	10	10	20				
Apply	20	20	30				
Analyse	20	20	30				
Evaluate	•	-	-				
Create	•	-	-				
Total	60	60	100				

Syllabus									
K.S.Rangasamy College of Technology – Autonomous R2022									
M.E - Structural Engineering									
		70 PSE 2	02 - Advanc	ed Reinforce	ed Concrete	Design			
Semeste		Hours/Week		Total	Credit	M	aximum Mark	(S	
Semeste	L	Т	Р	Hours	С	CA	ES	Total	
П	3	0	0	45	3	40	60	100	
Design of Beams and Columns Design for Limit state of collapse- Design for limit state of serviceability- Calculation of deflection and crack widthDesign of beams for combined effect of shear, bending moment and torsion. Design of beams curved in plan and spandrel beams - Design of slender columns								[9]	
Design of Design of I	Special RC Ele RC walls- Sheal ear walls- Desi	ements r walls-Classi	fication and [Design princip		of rectangula	r and	[9]	
Yield line t	Design of Flat Slab and Grid Floors Yield line theory of slabs – Hillerberg's method of design of slab – Design of flat Slab –shear in flat slab - Approximate analysis and Design of grid floors						[9]		
Inelastic b	ehaviour of Rehaviour of con analysis and de	ncrete beams				t redistributio	n – Baker's	[9]	
method of analysis and design – Design of cast in situ joints in frame Detailing Requirements Design and detailing of structural members - Reinforcement detailing as per SP: 34 & IS:5525 - Earthquake Resistant Design – Detailing requirements for Ductility as per IS:13920						[9]			
•			•				Total Hours	45	
Text Book									
 Varghese, P.C. "Advanced Reinforced Concrete Design", PHI Learning Pvt. Ltd.,2015. Krishna Raju N and Pranesh RN., "Design of Reinforced Concrete Structures", New Age International Publishers, New Delhi,2018. 									
Reference(s):									
1. Unnikrishna Pillai S, Devdas Menon, "Reinforced Concrete Design", McGraw-Hill Education, India, Nev Delhi, 2021						India, New			
	' '								
	3. SP 34 – Handbook on Concrete reinforcement and detailing – Fifth reprint, 1999								
4	IS 13920 :2016 - Ductile detailing of Reinforced Concrete structures subjected to seismic forces - Code of								

Course Contents and Lecture Schedule

S. No.	Topics	No. of hours					
1.0	Design of Beams and Columns						
1.1	Design for Limit state of collapse& serviceability	1					
1.2	Calculation of deflection and crack width	1					
1.3	Design of beams for combined effect of shear, bending moment and torsion.	1					
1.4	Design of beams curved in plan	2					
1.5	Design of Spandrel beams	2					
1.6	Design of slender columns	1					
2.0	Design of Special RC Elements						
2.1	Design of RC walls	1					
2.2	Shear walls Classification and Design principles	1					
2.3	Design of rectangular and flanged Shear walls	2					
2.4	Design of Corbels	2					
2.5	Design of Deep beams	2					
3.0	Design of Flat Slab and Grid Floors						
3.1	Yield line theory of slabs	1					
3.2	Hillerberg's method of design of slab	2					
3.3	Design of flat Slab	2					
3.4	Shear in flat slab Approximate analysis	1					
3.5	Design of grid floors	2					
4.0	Inelastic Behaviour of RC Beams						
4.1	Inelastic behaviour of concrete beams	1					
4.2	Moment Rotation curves	2					
4.3	Moment redistribution	2					
4.4	Baker's method of analysis and design	3					
4.5	Design of cast in situ joints in frame	2					
5.0	Detailing Requirements						
5.1	Design and detailing of structural members	2					
5.2	Reinforcement detailing as per SP : 34	2					
5.3	Reinforcement detailing as per IS:5525	2					
5.4	Earthquake Resistant Design	2					
5.5	Detailing requirements for Ductility as per IS:13920	2					
		•					

Course Designer

1. Mr.K.Angu Senthil - angusenthil@ksrct.ac.in

70 BSE 202	Finite Element Analysis	Category	L	T	Р	Credit
70 PSE 203	Finite Element Analysis	PC	3	1	0	4

- To introduce the concepts of Mathematical Modeling of Engineering Problems.
- To know the procedure and to solve two dimensional problems
- To appreciate the use of FEM to a range of Engineering Problems.
- To learn the concept of material and geometric Non-linearity
- To know the realistic engineering problem through computational simulations.

Pre-requisites

Fundamentals of Mathematics, knowledge of forces and resolution and equilibrium concepts.

Course Outcomes

On the successful completion of the course, students will be able to

	,	
CO1	Construct and solve the element equation for one dimensional structural element.	Analyse
CO2	Describe the concept of two dimensional elements.	Analyse
CO3	Analyse the 2D problems using isoparametric quadrilateral elements and Implement the Gaussian Quadrature expression for numerical integration.	Analyse
CO4	Identify the concepts of Non-linear Analysis of the structures.	Analyse
CO5	Apply the knowledge on application of Finite Element method	Apply

Mapping with Programme Outcomes

Coo	Pos						
Cos	1	2	3	4	5	6	
CO1	3	2	3	-	2	-	
CO2	3	2	3	3	2	3	
CO3	2	3	3	2	3	2	
CO4	3	2	3	2	3	-	
CO5	3	3	3	3	2	2	
3 - Strong; 2 - Medium; 1 – Some							

Assessment Pattern						
Bloom's		ssessment Tests larks)	End Sem Examination (Marks)			
Category	1	2				
Remember	10	10	20			
Understand	10	10	20			
Apply	20	20	30			
Analyse	20	20	30			
Evaluate	-	=	-			
Create	-	-	-			
Total	60	60	100			

Syllabus									
K.S.Rangasamy College of Technology – Autonomous R2022									
M.E - Structural Engineering									
70 PSE 203- Finite Element Analysis									
Semester	,r <u> </u>	Hours/Week					ximum Mar		
	L	Т	Р	Hours	С	CA	ES	Total	
<u> </u>	3	1	0	60	4	40	60	100	
Introduction to Finite Element Analysis Introduction-basic concepts of finite element analysis-steps in finite element analysis-Weighted Residual methods –Variational formulation of boundary value problem Finite element modeling - Element equation-Linear and quadratic shape functions- Bar, Beam and Truss Elements.								[9]	
Finite Element Analysis of 2D Problems Basic boundary value problem in 2 Dimensions – Triangular, quadrilateral, higher order elements-Poisson and Laplace equation-weak formulation-Linear strain triangular elements.								[9]	
Isoparametric Formulation Natural co-ordinate systems-Lagrangian interpolation polynomials-Isoperimetric element formulation-axisymmetry element-Numerical integration- one and two point problems.								[9]	
Non-Linear Analysis Definition – geometric and material nonlinearity – strain displacement – stress- strain– finite element format – software usage for large deflection – software for inelastic behaviour								[9]	
Practical Application of Finite Element Analysis Modeling and analysis using software packages-types of analysis-meshing-material properties and boundary conditions-Error evaluation.								[9]	
Total Hours (45+15)								60	
Text Book(s):									
1. Chandrupatla and Belegundu "Introduction to Finite Elements in Engineering", Prentice Hall India Pvt. Ltd. New Delhi, 4 th Edition, 2015.									
2. P.Seshu, "Finite Element Analysis", Prentice Hall of India Pvt. Ltd., New Delhi, 2009.									
Reference(s):									
	Madhujit Mukhopadhyay, Abdul Hamid Sheikh., Matrix and Finite element Analyses of Structures. Ane Books India. 2008.								
₂ Re	Reddy J N, "Finite Element Method", Tata McGraw Hill publishing Co Ltd, New Delhi, 3rdEdition, 2006.								
3. Ba	Bathe K.J., Cliffs, N.J. "Finite Element Procedures in Engineering Analysis", PHILearning Eastern Economy Editions, 2009								
4. Lo	Logan Deryl L., "A First Course in Finite Element Method", Thomson Brook/Cole, 5th Ed.2012.								

Course C	Contents and Lecture Schedule	
S. No.	Topics	No. of hours
1.0	Introduction to Finite Element Analysis	
1.1	Basic Concepts of Finite element analysis	1
1.2	Steps in finite element analysis	1
1.3	Weighted Residual methodsand Weak formulation	1
1.4	Variational formulation of boundary value problem	1
1.5	Finite element modeling	1
1.6	Tutorial- Rayleigh Ritz method	2
1.7	Element equation-Linear and quadratic	2
1.8	Shape functions- Bar and Beam Elements	2
1.9	Shape functions- Truss Elements	2
2.0	Finite Element Analysis of 2D Problems	
2.1	Basic boundary value problem in 2 Dimensions	1
2.2	Element stiffness matrix for Triangular element. quadrilateral, higher order elements	2
2.3	Constant strain triangle – Isoparametric representation	2
2.4	Potential energy approach – Element stiffness matrix, force terms and stress calculations	2
2.5	Element stiffness matrix for quadrilateral and higher order elements	2
2.6	Poisson equation	1
2.7	Laplace equation	1
2.8	Tutorial-Problems in two dimensional stress field	2
2.9	Linear strain triangular elements	1
3.0	Isoparametric Formulation	•
3.1	Natural co-ordinate systems	2
3.2	Four node quadrilateral elements	2
3.3	Lagrangian interpolation functions	2
3.4	Isoperimetric element formulation	2
3.5	Axisymmetry element	2
3.6	Numerical Integration - One point formula and two point formula	2
3.7	Tutorial-Problems in numerical integration using Gauss quadrature formula	2
4.0	Non-Linear Analysis	
4.1	Basic Concepts of Non-Linear Analysis	1
4.2	Geometric and Material nonlinearity	1
4.3	Strain displacement	1
4.4	Stress- Strain behavior of Non-linear analysis	1
4.5	Finite element format for non-linear analysis	1
4.6	Software usage for large deflection	1
4.7	Software for inelastic behaviour	1
4.8	Iteration methods and iterative methods, Newtons Raphson Method	1
4.9	Tutorials on Non-linear analysis problems	2
5.0	Practical Application of Finite Element Analysis	
5.1	Convergence and requirements	1
5.2	Modeling and analysis using software packages	2
5.3	Types of analysis	1
5.4	Types of meshing- III conditioned elements	1
5.5	Properties and boundary conditions	1
5.6	Discretisation errors	1
5.7	Error evaluation	1
5.8	Auto and Adaptive Mesh Generation Techniques	1

Course Designer

Dr.J.Abdul Bari - abdulbari@ksrct.ac.in

70 PAC 002	Disaster Management	Category	L	Т	Р	Credit
		PC	2	0	0	0

- Summarize basics of disaster
- Explain a critical understanding of key concepts in disaster risk reduction and humanitarian response.
- Illustrate disaster risk reduction and humanitarian response policy and practice from multiple perspectives.
- Describe an understanding of standards of humanitarian response and practical relevance in specific types of disasters and conflict situations.
- Develop the strengths and weaknesses of disaster management approaches Teach how to improve writing skills and level of readability

Pre-requisites

-NIL-

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Ability to summarize basics of disaster	Apply
CO2	Ability to explain a critical understanding of key concepts in disaster risk	Analyse
002	reduction and humanitarian response.	
CO3	Ability to illustrate disaster risk reduction and humanitarian response policy	Understand
003	and practice from multiple perspectives.	
CO4	Ability to describe an understanding of standards of humanitarian response	Analyse
004	and practical relevance in specific types of disasters and conflict situations.	
CO5	Ability to develop the strengths and weaknesses of disaster management	Apply
CO3	approaches	

Mapping with Programme Outcomes

Coo	Pos								
Cos	1	2	3	4	5	6			
CO1	3	3	2	2	3	1			
CO2	3	3	2	2	3	1			
CO3	3	3	2	2	3	1			
CO4	3	3	2	3	2	1			
CO5	3	3	2	3	2	1			
3 - Strong	3 - Strong; 2 - Medium; 1 – Some								

Plaamia Catagory	Continuous Assessment Tests (Marks)			
Bloom's Category	1	2		
Remember	30	30		
Understand	30	30		
Apply	40	40		
Analyse	-	-		
Evaluate	-	-		
Create	-	-		
Total	100	100		

Syllabus								
	K	.S.Rangasar	ny College o	of Technolog	gy – Autonor	mous R2022	1	
			M.E - Str	uctural Engi	neering			
				- Disaster M				
Semester		Hours/Week		Total	Credit	Ma	aximum Mark	
Ocinicator	L	T	Р	Hours	С	CA	ES	Total
II	2	0	0	30	0	40	60	100
Introduction								
	inition, Factor				n Hazard and	Disaster; Na	atural and	[6]
	sasters: Diffe			Magnitude.				
	ions of Disa							[6]
	amage, Loss							
	, Volcanisms							
	Man-made of				Industrial Ac	cidents, Oil	Slicks And	
	eaks Of Disea		emics, vvar A	ind Conflicts.				[0]
	rone Areas II		to Floodo o	and Drawalata	l andalidas	and Avalana	-b A	[6]
	smic Zones;							
Prone to Cyc		asiai nazaiu	s with Specia	ai Reierence	ro rsunami,	Post-Disast	ei Diseases	
•	್ತು reparedness	and Manage	mont					[6]
	s: Monitoring			ina a Disas	ter or Haza	rd: Evaluatio	on of Rick	راما
Application of								
	al and Commi			orological al	id other 7tg	crioico, ivica	ila reports.	
Risk Asses		у орс с						[6]
	k: Concept a	nd Elements.	Disaster Ri	sk Reduction	n. Global and	l National Di	isaster Risk	[-]
	chniques of I							
	ticipation in R						3,	
·	•					7	Total Hours	30
Text Book(s):							
1. Goel	S. L., Disaste	er Administra	tion and Ma	nagement Te	ext And Case	Studies", D	eep & Deep	Publication
PVt. L	td., New Delh							
			er Managem	ent in India:	Perspectives	s, issues and	l strategies "'l	New Royal
DOOK (Company,200)7.						
Reference(s								
	, , , , , , , , , , , , , , , , , , , ,							01.
	manian R,"Di							
						ent Risk Red	duction & Ma	ınagement:
Cilma	te change and							
4. Janki <i>l</i>	Andharia, Disa	aster studies:	Exploring In	tersectional t	ies in Disaste	r Discourse,	Springer, 202	.0.

Course Contents and Lecture Schedule

S. No.	Topics	No. of hours
1.0	Introduction	•
1.1	Disaster: Definition, Factors and Significance	2
1.2	Difference between Hazard and Disaster	2
1.3	Natural and Manmade Disasters	2
1.4	Difference, Nature	2
1.5	Types and Magnitude	1
2.0	Repercussions of Disasters and Hazards	
2.1	Economic Damage, Loss of Human and Animal Life	2
2.2	Destruction of Ecosystem. Natural Disasters: Earthquakes, Volcanisms, Cyclones	2
2.3	Tsunamis, Floods, Droughts And Famines, Landslides And Avalanches	2
2.4	Man-made disaster: Nuclear Reactor Meltdown, Industrial Accidents	1
2.5	Oil Slicks And Spills, Outbreaks Of Disease And Epidemics, War And Conflicts	2
3.0	Disaster Prone Areas In India	
3.1	Study of Seismic Zones	1
3.2	Areas Prone to Floods and Droughts	2
3.3	Landslides and Avalanches	2
3.4	Areas Prone to Cyclonic and Coastal Hazards with Special Reference To Tsunami	2
3.5	Post-Disaster Diseases and Epidemics	2
4.0	Disaster Preparedness and Management	
4.1	Preparedness: Monitoring of Phenomena Triggering a Disaster or Hazard	2
4.2	Tsunamis, Floods, Droughts And Famines, Landslides And Avalanches	2
4.3	Tsunamis, Floods, Droughts And Famines, Landslides And Avalanches	2
4.4	Application of Remote Sensing, Data from Meteorological and other Agencies	2
4.5	Media Reports: Governmental and Community Preparedness	1
5.0	Risk Assessment	
5.1	Disaster Risk: Concept and Elements	2
5.2	Disaster Risk Reduction, Global and National Disaster Risk Situation	2
5.3	Techniques of Risk Assessment	2
5.4	Global Co-Operation in Risk Assessment and Warning	2
5.5	People's Participation in Risk Assessment. Strategies for Survival	1

Course Designer

1. Dr.M.Velumani- velumani@ksrct.ac.in

60 PSE 2P1	Advanced Structural	Category	ل ا	Т	Ρ	Credit
00 F3E 2F1	Engineering Laboratory	PC	0	0	4	2

- To explain about the behavior of beams and slabs in flexure and shear
- To understand the concepts of Strain recording instruments
- To know about the measurement of vibration.
- To illustrate about the Dynamic testing of cantilever beams
- To identify the Static cyclic testing of single bay two storied frames

Pre-requisites

Strength of Materials, Structural Analysis, Design of Reinforced Concrete design, Design of Steel Structures, Experimental Methods and Model Analysis.

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Construct the concrete beam and absorb the behavior of flexural member for	Analyse
CO2	different loading conditions. Demonstrate the testing for strength and deflection behavior of steel sections.	Analyse
	Illustrates the behavior of column under axial load and compute the direct and	Analyse
CO3	bending stresses.	Analyse
CO4	Familiarize the behavior of cantilever beam under dynamic loading and evaluate the mode shapes.	Analyse
CO5	Employ the static cyclic testing on frames and predict the stiffness and energy dissipation of the frame.	Apply

Mapping with Programme Outcomes

Coo	Pos							
Cos	1	2	3	4	5	6		
CO1	3	1	1	1	1	2		
CO2	3	1	1	1	1	2		
CO3	3	2	2	1	1	2		
CO4	3	2	3	2	2	2		
CO5	3	2	3	2	2	2		
3 - Stron	a. 2 - Medium.	1 - Some	•	•				

Bloom's	Continuous Asses	ssment Tests (Marks)	End Sem Examination (Marks)
Category	1	2	
Remember	10	10	20
Understand	10	10	20
Apply	20	20	30
Analyse	20	20	30
Evaluate	-	-	-
Create	-	-	-
Total	60	60	100

K.S.Rangasamy College of Technology – Autonomous R2022								
	M.E – Structural Engineering							
	70 PSE 2P1 - Advanced Structural Engineering Laboratory							
Compotor	Hours/Week			Total Hrs	Credit	Max	kimum Marks	3
Semester	L	Т	Р	i otai Hrs	С	CA	ES	Total
II	0	0	4	60	2	60	40	100

List of Experiments:

- 1. 1. Fabrication, casting and testing of simply supported reinforced concrete beam for strength and deflection behaviour.
- 2. Testing of simply supported steel beam for strength and deflection behavior.
- 3. Fabrication, casting and testing of reinforced concrete column subjected to concentric and eccentric loading.
- 4. Dynamic testing of cantilever beams.
 - a. To determine the damping coefficients from free vibrations.
 - b. To evaluate the mode shapes.
- 5. Static cyclic testing of single bay two storied frames and evaluate
 - a. Drift of the frame
 - b. Stiffness of the frame.

Energy dissipation capacity of the frame

Text book(s)									
1.	Sadhu Singh, " Experimental Stress Analysis", Khanna Publications, New Delhi, 2000.								
Reference(s)									
1.	1. Dalleey J W, and Riley W F, "Experimental Stress Analysis", McGraw-Hill, Inc. New York, 1991.								
2	Srinath L.S, Raghavan M.R, Lingaish K, Gargesha G, Paint B, and Ramachandra K, "Experimental Stress								
2.	Analysis", Tata McGraw-Hill Publishing Company Ltd, New Delhi, 1984.								

Course Designer(s)

1. Dr.R.Jagadeesan - jagadeesan@ksrct.ac.in

70 PSE 2P2	Computer Aided Analysis	Category	L	T	Р	Credit
70 F3E 2F2	and Design Laboratory	PC	0	0	4	2

- To learn the principles of computer graphics and application packages, optimization and artificial intelligence.
- To expose students to computer aided drafting.
- To familiarize students with 2D objects in drawing and enable them to prepare plan, elevation and sectional drawings.
- To expose students to 3D modelling.

Pre-requisites

Basic knowledge in computer operation and Civil Engineering design software's.

Course Outcomes

On the successful completion of the course, students will be able to

CO1	To work on spreadsheets and worksheets.	Analyse
CO2	To understand regression and matrix inversion concepts.	Analyse
CO3	To arrive at C programs to solve problems using numerical techniques.	Analyse
CO4	To use computer methods of structural analysis to solve structural problems.	Analyse
CO5	To work on finite element programming to solve real time problems.	Apply

Mapping	Mapping with Programme Outcomes											
Cos				Pos								
5	1	2	3	4	5	6						
CO1	3	3	2	3	2	3						
CO2	3	3	3	2	2	2						
CO3	3	3	2	3	2	2						
CO4	3	3	2	2	2	2						
CO5 3 3 2 3 3 3												
3 - Strong	g; 2 - Medium; 1	I – Some										

Plaam'a Catagony	Continuous Assess	ment Tests (Marks)	End Sem Examination (Marks)			
Bloom's Category	1	2				
Remember	10	10	20			
Understand	10	10	20			
Apply	20	20	30			
Analyse	20	20	30			
Evaluate	-	=	-			
Create	-	=	-			
Total	60	60	100			

	K.S.Rangasamy College of Technology – Autonomous R2022										
	M.E - Structural Engineering										
	70 PSE 2P2 - Computer Aided Analysis and Design Laboratory										
Semester	Hours/Week			Total Ura	Credit	Maximum Marks		8			
Semester	L	Т	Р	Total Hrs	С	CA	ES	Total			
II	0	0	4	60	2	60	40	100			

List of Experiments:

Module 1: Analysis, design and drafting with commercial software: (3 D modelling – RCC & STEEL).

- (a) Modelling and analysis applying known concepts of structural components, codal provisions for loads and dimensioning, analysis procedures etc.
- (b) Design using software or manual designusing spreadsheets software or Macros.
- (c) Drafting / detailing using commercial CAD software. (Different groups may be assigned different buildings/structures).

Module 2: Programming for structural engineering using MATLAB or any programming language choice of student. Exercises include, but not limited to: Solution using Newton Raphson method, Gauss elimination, Gauss-Jordan method, Linear Regression, Curve fitting by Polynomial Regression, Eigen value extraction by power method etc.

Module 3: Finite Element software fundamentals - modelling, analysis and postprocessing of simple planar, wire and shell models – introduction to different types of meshes, elements, analysis steps etc.

Text book(s)

1. Rajaraman, V., Computer Oriented Numerical Methods, Prentice – Hall of India, 2004.

Reference(s)

- 1. Krishnamoorthy C. S and Rajeev S., "Computer Aided Design", Narosa Publishing House, New Delhi, 1991.
- 2. Hinton E. and Owen D. R. J., Finite Element Programming, Academic Press, 1977.

Course Designer(s)

Mr.S.Gunasekar

-gunasekar@ksrct.ac.in

70 PSE 3P1	Project Work Phase - I	Category	L	Т	Р	Credit
70 P3E 3P1	Project Work Phase - I	CG	0	0	16	8

- To import the practical knowledge to the students
- To make them to carry out the technical procedures in their project work.
- To provide an exposure to the students to refer, read and review the research articles, journals and conference proceedings relevant to their project work.
- To learn about new product development
- To learn how to apply theoretical knowledge in the field.

Pre-requisites

Basic knowledge in computer operation and Civil Engineering design software's.

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Survey the relevant literature such as books, national/international refereed journals and contact resource persons for the selected topic of research.	Analyse
CO2	Use different experimental techniques/different software/ computational / analytical tools.	Analyse
CO3	Design and develop an experimental set up/ equipment/test rig	Apply
CO4	Conduct tests on existing set ups / equipments and draw logical conclusions from the results after analyzing them.	Apply
CO5	Work in a research environment or in an industrial environment.	Apply

Mapping with Programme Outcomes

00-													
COs	1	2	3	4	5	6							
CO1	3	3	2	3	2	3							
CO2	3	3	3	2	2	2							
CO3	3	3	2	3	2	2							
CO4	3	3	2	2	2	2							
CO5	3	3	2	3	3	3							
3 - Strong	; 2 - Medium; 1 -	3 - Strong; 2 - Medium; 1 – Some											

Review I (R	1)	Review	II (R2)	(2) R		Review III (R3)		Total (R1+R2+R3)		Internal
Literature Survey	Topic Identification & Justification	Work Plan	Approach	Concl	usion	Demo- Existing System	Presen tation	Report	Total	
10	10	10	20	20		10	10	10	100	100

Syllabus											
K.S.Rangasamy College of Technology – Autonomous R2022											
	M.E – Structural Engineering										
	70 PSE 3P1- Project Work Phase-I										
Compotor	Ho	ours/Week		Total	Credit	Max	imum Marks	3			
Semester L T P Hours C CA ES Total											
III	III 0 0 16 120 8 100 0 100										

- The project work should preferably be a problem with research potential.
- The project should involve scientific research, design, generation/collection, and analysis of data, determining a solution, and must preferably bring out the individual contribution.
- The seminar should be based on the area in which the candidate has undertaken the dissertation work as per the common instructions for all branches of M.E/M. Tech.
- Three reviews will be conducted by a committee of subject experts.
- Each review has to be evaluated for 100 marks.
- Internal evaluation has to be done for 100 marks.
- The final examination shall consist of the preparation of a report consisting of a detailed problem statement and a literature review.
- The preliminary results (if available) of the problem may also be discussed in the report.
- The work has to be presented in front of the examiners panel set by the Head and PG Project Coordinator.

	K.S.Rangasamy College of Technology – Autonomous R2022											
	70 PSE 3P2 IN-PLANT TRAINING											
M.E. STRUCTURAL ENGINEERING												
Semester		Hours / Wee	ek	Total hrs	Credit	M	aximum	Marks				
Jennester	L	Т	Р	Totaliiis	С	CA	ES	Total				
III	0	0	0	0	2	100	0	100				
Objective(s)	know Prov perm To de Enha	rledge ide students t nanent commitn evelop skills in nnce the ability	he opportunity nents are made the application to improve stud	to actual wor to test their i e of theory to prac dent's creativity s bility and respor	interest in ctical work skills and s	a partic situations	cular car s eas	reer before				
Course Outcomes	At the end of the course, the students will be able to 1. Understand the psychology of the workers, their habits, attitudes and approach to problems along with the practices followed either at factory or at site 2. Familiarized with various Design, Manufacturing, Analysis, Automation and their applications along with relevant aspects of industry management											

- Students undergo in-plant training during second semester summer vacation (Minimum of Two weeks)
- Reports containing the observation of the students after the training with their personal comments/suggestion are to be prepared and submitted in the beginning of third semester
- A technical presentation to be done by the students immediately after submission of the report at the beginning of third semester

70 PSE 4P1	Project Work Phase - II	Category	L	T	Р	Credit
70 PSE 4P1	Project Work Phase - II	CG	0	0	32	16

- To implement their innovative ideas in practical
- To retrieve the hazards by adopting suitable assessment methodologies and staring it to global.
- To strengthens the students to carry out the problems on their own
- To improve the leadership skills and work in a group
- To solve complex problems and obtaining solution for them

Pre-requisites

Basic knowledge in computer operation and Civil Engineering design software's.

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Develop attitude of lifelong learning and will develop interpersonal	Analyse
COT	skills to deal with people working in diversified field.	
CO2	Write technical reports and research papers to publish at national and	Analyse
CO2	international level.	
CO3	Develop strong communication skills to defend their work in front of	Apply
003	technically qualified audience.	
CO4	Learn about Patent filing and IPR	Apply
CO5	Gain knowledge about new business ideas and product development	Apply

Mapping with Programme Outcomes

COs	Pos								
COS	1	2	3	4	5	6			
CO1	3	3	2	3	2	3			
CO2	3	3	3	2	2	2			
CO3	3	3	2	3	2	2			
CO4	3	3	2	2	2	2			
CO5	3	3	2	3	3	3			
3 - Stron	3 - Strong; 2 - Medium; 1 – Some								

	Internal Assessment (60)							
Items	Review 1	Review 2	Review 3	Publication	(40)			
Marks	5	10	15	30	40			
	Total internal marks 60							

Syllabus									
K.S.Rangasamy College of Technology – Autonomous R2022									
	M.E – Structural Engineering								
			70 PSE 4P1	- Project Wo	rk Phase-II				
Compotor	Ho	urs/Week		Total	Credit	Max	imum Marks	}	
Semester	L	T	Р	Hours	С	CA	ES	Total	
IV	0	0	32	240	16	60	40	100	

Planning & performing experiments

Based on the project proposal submitted in earlier semester, students should be able to plan, and engage in, an independent and sustained critical investigation and evaluate a chosen research topic relevant to structural engineering and civil society challenges, such as earthquake-resistant design, advanced concrete technology, and structural health monitoring. They should be able to systematically identify relevant theory and concepts, relate these to appropriate methodologies and evidence, apply appropriate techniques and draw appropriate conclusions. Senior researchers should be able to train the students such that they can work independently and are able to understand the aim of each experiment performed by them. They should also be able to understand the possible outcomes of each experiment.

Thesis writing

At the end of their project, thesis has to be written giving all the details such as aim, methodology, results, discussion and future work related to their project. Students may aim to get their research findings published in a peer-reviewed journal. If the research findings have application-oriented outcomes, the students may file patent application.

	Theory of Structural	Category	L	T	Р	Credit
70PSE E11	Theory of Structural Stability	PE	3	0	0	3

- To Learn behaviour of structural elements under compressive loads,
- To understand the stability of columns, beams and plates under various load conditions.
- To analyse beam column behaviour along with frames.
- To know the basic theory for buckling of beams for various applications.
- To Introduce numerical techniques

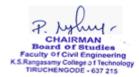
Pre-requisites

knowledge of Structural Analysis, Strength of Materials & Mathematical Logic.

Course	Course Outcomes							
On the su	On the successful completion of the course, students will be able to							
CO1	Obtain the concept of structural stability of structures	Analyse						
CO2	Compare the method and analysis of structures	Analyse						
CO3	Design a beam column behaviour with the portal frame	Analyse						
CO4	Explain the torsional buckling in beam	Analyse						
CO5	Interpret the use of energy methods with numerical techniques	Apply						

C00	Pos								
Cos	1	2	3	4	5	6			
CO1	-	3	2	3	2	2			
CO2	3	3	3	2	2	2			
CO3	2	-	2	3	2	1			
CO4	3	3	2	2	2	3			
CO5	3	3	-	2	3	-			
3 - Stron	3 - Strong; 2 - Medium; 1 – Some								

Assessment Pattern										
Bloom's		ssessment Tests larks)	End Sem Examination (Marks)							
Category	1	2								
Remember	10	10	20							
Understand	10	10	20							
Apply	20	20	30							
Analyse	20	20	30							
Evaluate	-	=	-							
Create	-	-	-							
Total	60	60	100							



Syllabus										
K.S.Rangasamy College of Technology – Autonomous R2022										
M.E - Structural Engineering										
	70 PSE E11-Theory of Structural Stability									
Semest	Hours/Week Total Credit Maximum Marks									
Ocilios	L	Т	Р	Hours	С	CA	ES	Total		
	3	0	0	45	3	40	60	100		
Stability of Columns Concepts of Elastic Structural stability- Analytical approaches to stability - characteristics of stability analysis- Elastic Buckling of columns- Equilibrium - Energy and Imperfection approaches – Non-prismatic columns- Built up columns- orthogonality of buckling modes- Effect of shear on buckling load - Large deflection theory.								[9]		
Method Approxi different behavion Effective Theory.	Is of Analysis mate methods ce and finite Ele our – South well e length of Colu	and in Elas – Rayleigh a ement - ana I plot - Colui umns - Inela	tic Bucklir and Galerki lysis of colu nn curves -	ng In methods Jumns – Exp Derivation	– numerical erimental st of Column (udy of colu design form	mn ıula -	[9]		
Beam of Column without	Beam Columns and Frames Beam column behaviour- standard cases- Continuous columns and beam columns – Column on elastic foundation – Buckling of frames – Single storey portal frames with and without side sway – Classical and stiffness methods – Approximate evaluation of critical loads in multistoried frames – Use of Wood's charts.							[9]		
Lateral beams Numerio cross se	ng of Beams buckling of bea – simply suppo cal solutions – ection - Flexura	orted and Ca Torsional I I torsional b	antilever be ouckling –	eams - Narr Uniform an	ow rectango d non unifo	ular cross s orm Torsior	sections- –	[9]		
Isotropi	ig of Thin Plat c rectangular p - Use of Energy	lates - Gov						[9]		
							otal Hours	45		
Text Bo										
	, , , , , , , , , , , , , , , , , , ,									
2. Ashwin Kumar, "Stability of Structures", Allied Publishers Ltd, New Delhi, 2008.										
Reference(s): 1. Iyengar, N.G.R, "Structural Stability of Columns and Plates" East West Press Pvt Ltd, New Delhi, 2016										
3. G	ambhir, "Stabil	ity Analysis	and Desigr	of Structur	es", Springe	er, New You	rk, 2004.			
4. S										

Course Contents and Lecture Schedule No. of S. No. **Topics** hours 1.0 Stability of Columns 1.1 Concepts of Elastic Structural stability 1 1.2 Analytical approaches to stability 1 1.3 characteristics of stability analysis 1 1.4 Elastic Buckling of columns- Equilibrium 1 1.5 Energy and Imperfection approaches 1 1.6 Non-prismatic columns 1 Built up columns - orthogonality of buckling modes 1.7 1 Effect of shear on buckling load 1.8 1 1.9 Large deflection theory 1 2.0 Methods of Analysis and in Elastic Buckling 2.1 Approximate methods 2.2 Rayleigh and Galerkin methods - numerical methods 2 2.3 Finite difference and finite Element - analysis of columns 1 Experimental study of column behaviour 2.4 1 2.5 South well plot - Column curves 2 2.6 Derivation of Column design formula 1 2.7 1 Effective length of Columns 2.8 Inelastic behaviour 1 2.9 Tangent modulus and Double modulus Theory. 1 **Beam Columns and Frames** 3.0 3.1 Beam column behaviour 1 3.2 standard cases- Continuous columns and beam columns 1 Column on elastic foundation 3.3 1 3.4 1 **Buckling of frames** Single storey portal frames with and without side sway 3.5 1 3.6 Classical and stiffness methods 1 Approximate evaluation of critical loads in multistoried frames 3.7 1 Use of Wood's charts 2 3.8 4.0 **Buckling of Beams** 4.1 Lateral buckling of beams 1 4.2 Energy method- Application to Symmetric and unsymmetric I beams 1 4.3 simply supported and Cantilever beams 1 Narrow rectangular cross sections - Numerical solutions 4.4 2 Torsional buckling 4.5 1 Uniform and non uniform Torsion on open cross section 4.6 1 4.7 Flexural torsional buckling 1 Equilibrium and energy approach 4.8 1 5.0 **Buckling of Thin Plates** 5.1 Isotropic rectangular plates 1 5.2 Governing Differential equations 2 Simply Supported on all edges 5.3 1 5.4 Use of Energy methods 2 5.5 Plates with stiffeners 2 5.6 Numerical Techniques

Course Designer

1. Dr.D.Sivakumar - sivakumard@ksrct.ac.in

	Theory of Plates and	Category	L	T	Р	Credit
70 PSE E12	Theory of Plates and Shells	PE	3	0	0	3

- To study the behavior of the plates and shells with different geometry under various types of loads
- To illustrate design of several of plates.
- To enable the student Analyse and design thin shell structures including domes, hyperbolic, parabolic, elliptic and cylindrical shells.
- To knowledge about thin and thick shells.
- To understand design of cylindrical shells.

Pre-requisites

Fundamentals of Mathematics, knowledge of strength of materials and its mechanics and theory of elasticity and plasticity.

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Analyse bending of long rectangular plates using thin plate theory	Analyse
CO2	Analyse circular plates with various loading conditions	Analyse
CO3	Analyse rectangular plates using classical approach and methods	Analyse
CO4	Analyse bending of Anisotropic plates	Analyse
CO5	Design of R. C. Cylindrical shells and long shells.	Apply

Coo	Pos							
Cos	1	2	3	4	5	6		
CO1	2	2	3	2	2	1		
CO2	-	-	3	-	2	1		
CO3	2	2	3	2	2	1		
CO4	-	-	3	-	2	1		
CO5	1	1	3	2	3	1		
3 - Stron	3 - Strong; 2 - Medium; 1 – Some							

Assessment Patte	ern		
Bloom's		ssessment Tests arks)	End Sem Examination (Marks)
Category	1	2	
Remember	10	10	20
Understand	10	10	20
Apply	20	20	30
Analyse	20	20	30
Evaluate	-	-	-
Create	-	-	-
Total	60	60	100

Syllabus								
K.S.Rangasamy College of Technology – Autonomous R2022								
	M.E - Structural Engineering							
		70 P	SE E12-The	eory of Plat	es and Sh	ells		
Semester	. <u> </u>	lours/Weel		Total	Credit		ximum Mar	'ks
Semester	L	T	Р	Hours	С	CA	ES	Total
	3	0	0	45	3	40	60	100
Thin Plat equation,	/ Loaded Pla es with sma various boun	II defection		loaded thi	n plates, (governing	differential	[9]
Rectangu methods, difference	ular Plates ar plates. Sir Rectangular and Finite el	plates with	/arious edg					[9]
Circular Symmetric	Plates cal bending o	f circular pla	ates, plates	on elastic f	oundation.			[9]
Structural	of Shells behavior of ace, Design o							[9]
Design of	of Cylindrica R.C cylindric s – Design of	al shell with				ng shells –	Design for	[9]
						To	otal Hours	45
Text Boo								
	ldy J N, "T∣ ss,2006.	heory and	Analysis o	of Elastic F	Plates and	Shells", S	second editi	on, CRC
	Timoshenko S and Wojnowsky - Kreiger "Theory of plates and shells" Mc Graw, Hill book							
	Reference(s):							
1. Iyengar, N.G.R, "Structural Stability of Columns and Plates" East West Press Pvt Ltd, New Delhi, 2016							Ltd, New	
	oshenko, S.F	, and Gere	J.M. "Theo	ory of Elasti	c stability",	McGraw-Hi	II Company,	2010
	nbhir, "Stabili							
	itser.G.J and							06.

Course Contents and Lecture Schedule

S. No.	Topics	No. of hours
1.0	Laterally Loaded Plates	
1.1	Cylindrical bending of long rectangular plates - Differential equation	1
1.2	Plates with simply supported edges	1
1.3	Plates with built-in edges	1
1.4	Slope and curvature of slightly bent plates	2
1.5	Relation between bending moment and curvature	2
1.6	Various boundary conditions.	2
2.0	Rectangular Plates	
2.1	Small deflections of laterally loaded plates – Differential equation	1
2.2	Simply supported rectangular plates under sinusoidal loading	1
2.3	Introduction to Navier's solution	1
2.4	Simply supported rectangular plates under uniform loading	1
2.5	Simply supported rectangular plates under hydrostatic pressure	1
2.6	Simply supported rectangular plates under concentrated load	1
2.7	Simply supported rectangular plates under uniform loading over an area of a rectangle	1
2.8	Introduction to Levy's method	1
2.9	Simply supported rectangular plates under uniform loading	1
3.0	Circular Plates	-
3.1	Symmetrical bending of laterally loaded circular plates – Differential equation	2
3.2	Circular plates with uniform loading	2
3.3	Circular plate with triangular loading	1
3.4	Circular plate with thangular loading Circular plate with circular hole subjected to moment at the inner edge	1
3.5	Circular plate with concentrated load	1
3.6	Circular plate with concentrated load Circular plate loaded at the centre	1
3.7	Circular plates with moments at the edges	1
	Theory of Shells	I
4.0	•	
4.1	Simply supported rectangular plates under hydrostatic pressure	2
4.2	Bending of laterally loaded thin plates – Differential equation	1
4.3	Simply supported and fixed square and rectangular plates under uniform loading	1
4.4	Simply supported and fixed square and rectangular plates under partial loading	1
4.5	Simply supported and fixed square and rectangular plates under triangular loading	1
4.6	Simply supported and fixed square and rectangular plates under trapezoidal loading	1
4.7	Energy methods - Principle of virtual work- Principle of minimum potential energy	1
5.0	Design of Cylindrical Shells	
5.1	Bending of Anisotropic plates – Differential equation	2
5.2	Bending of rectangular plates	1
5.3	Bending of circular and elliptic plates	1
5.4	Classification of shells	1
5.5	Case Study – Shell Structures	1
5.6	Design of R.C cylindrical shell with edge beams using theory for long shells	1
5.7	Design for long shells	1
5.8	Design of shells with ASCE manual coefficients	1
Course D		

Course Designer

Dr.K.Vijaya Sundravel

- vijayasundravel@ksrct.ac.in

		Category	L	T	Р	Credit
70PSE E13	Design of Tall Buildings	PE	3	0	0	3

- The design criteria of the tall buildings, materials used, modern concepts
- The different types of loads to be considered in designing, behaviour of structural systems, analysis.
- The design of tall structures using different methods.
- The stability analysis of the tall buildings.
- Design against wind loads as per BIS code of practice and special consideration in the design of tall structures.

Pre-requisites

Fundamentals of Mathematics, knowledge of basic Science

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Implement design philosophies for the development of high rise structures.	Analyse
CO2	Find out the design loads for high rise buildings.	Analyse
CO3	Analyse the behaviour of tall building subjected to lateral loading.	Analyse
CO4	Perform computerized general three dimensional analysis for high rise building.	Analyse
CO5	Perform stability analysis using various methods for tall buildings.	Apply

C	Pos								
Cos	1	2	3	4	5	6			
CO1	2	2	3	2	2	2			
CO2	-	-	3	-	2	-			
CO3	2	2	3	2	2	2			
CO4	-	-	3	-	2	-			
CO5	1	1	3	2	3	2			
3 - Stron	3 - Strong; 2 - Medium; 1 – Some								


Assessment Patte	ern		
Bloom's Category		ssessment Tests arks)	End Sem Examination (Marks)
Category	1	2	
Remember	10	10	20
Understand	10	10	20
Apply	20	20	30
Analyse	20	20	30
Evaluate	=	-	-
Create	-	-	-
Total	60	60	100

Syllabus								
	K.S.F	Rangasamy			gy - Auton	omous R2	022	
	M.E - Structural Engineering							
					all Building			
Semester	ŀ	lours/Wee		Total	Credit		ximum Mar	
Comocion	L	Т	Р	Hours	С	CA	ES	Total
l	3	0	0	45	3	40	60	100
Design C					. 5 .			
					gh Performa		rete, Fibre	[9]
	Concrete, L	lignt weignt	concrete, s	seir Compa	cting Concre	ete.		
Loading Gravity Loa	ding – Dea	d load, Live	load, Impa	ct load, Cor	struction lo	ad, Sequen	itial	
loading. Wi	nd Loading	- Static and	d Dynamic <i>i</i>	Approach, A	nalytical me	ethod, Wind	d Tunnel	[9]
				- Equivalent	lateral Loa	d analysis,	Response	
Spectrum N								
	r of Structi							
					Behaviour of			[9]
				oupled She	ar walls, Wa	all – Frames	s, Tubular,	[0]
Outrigger b								
	and Design		A courata	analyaia an	d reduction	toohniquos	Analysis	
					es, drift and			[9]
					l Shrinkage			[0]
Effects and			1110101110111	, Groop and	· Ommago	0110010, 10	mporataro	
Stability A								
		sis of frame	es, wall – fr	ames, Appr	oximate me	ethods, Sec	cond order	
					first order			[9]
					mb effects,	Effect of s	tiffness of	
members a	nd foundati	on rotation	in stability o	f structures	•			
						To	tal Hours	45
Text Book		2 '''	A	-		Δ 1 .		
						s - Analysi	is and Desi	gn", John
Wiley and Sons, Inc. Wiley India PVt.Ltd. New Deini., 2011.								
2. Taranath B.S, "Structural Analysis and Design of Tall Buildings", McGraw-Hill, 1988. Reference(s):								
		"Tall Ruildin	na Foundati	on Design"	Taylor & E	ancie 201	7	
Mark P Sarkisian "Designing Tall Buildings Structure As Architecture" Taylor & Francis						Francis		
	2. Mark P Sarkisian, "Designing Tall Buildings Structure As Architecture", Taylor & Francis., 2015.							
					ergamon Pr			
4. Lynn	S.Beedle, "	'Advances i	n Tall Build	ings", CBS	Publishers a	and Distribu	itors, Delhi, 1	1996.

Course Contents and Lecture Schedule No. of S. No. **Topics** hours 1.0 **Design Criteria** 1.1 Design Philosophy, Materials 1.2 Modern concepts 1 1.3 High Performance Concrete 1 Fibre Reinforced Concrete 1.4 2 1.5 Light weight concrete 2 Self Compacting Concrete. 2 1.6 2.0 Loading 2.1 **Gravity Loading** 1 2.2 Dead load, Live load, Impact load 1 2.3 Construction load, Sequential loading 1 2.4 Wind Loading 1 Static and Dynamic Approach, Analytical method, Wind Tunnel Experimental 1 2.5 methods. 2.6 Earthquake Loading 1 Equivalent lateral Load analysis 2.7 1 2.8 Response Spectrum Method 1 2.9 Combination of Loads 1 3.0 **Behaviour of Structural Systems** Factors affecting the growth, height and structural form 3.1 2 Behaviour of Braced frames 3.2 2 3.3 Behaviour of Rigid Frames 1 3.4 Behaviour of In filled frames 1 3.5 Shear walls, Coupled Shear walls, Wall 1 3.6 1 Tubular Systems 3.7 Outrigger braced, Hybrid systems 1 4.0 **Analysis and Design** 4.1 Modeling for approximate analysis 2 4.2 Accurate analysis and reduction techniques 1 4.3 Analysis of structures as an integral unit 1 4.4 Analysis for member forces, drift and twist 1 4.5 Computerized 3D analysis 1 4.6 Design for differential movement 1 Creep and Shrinkage effects, Temperature Effects and Fire Resistance. 4.7 1 5.0 **Stability Analysis** 5.1 Overall buckling analysis of frames 2 5.2 Overall buckling analysis of wall frames 1 5.3 Second order effect of gravity loading – Approximate method 1 P – Delta Effects, Simultaneous first order and P-Delta analysis 5.4 1 5.5 Translational instability 1 Torsional Instability 5.6 1 5.7 Out of plumb effects 1 5.8 Effect of stiffness of members and foundation rotation in stability of structures 1 **Course Designer**

1. Dr.K.Vijaya Sundravel - vijayasundravel@ksrct.ac.in

70PSE E14	Design of Structures for Dynamic Loads	Category	L	Т	Р	Credit
	Dynamic Loads	PE	3	0	0	3

- To Design factors, behaviour of structures in cyclic loads,
- To recap of structural dynamics with reference of different systems,
- To understand ductility, earth quake design of structures,
- To design of structures against blast and impact
- To Design against wind loads as per BIS code of practice and special consideration in the design of structures.

Pre-requisites

Basic knowledge of Earthquake, RCC Structures & Soil Mechanics.

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Explain the behavior of structures under dynamic loads	Apply
CO2	Design structures for earthquake, blast and impact loads	Analyse
CO3	Perform ductile detailing	Analyse
CO4	Design against wind load as per BIS Code	Apply
CO5	Ductility Detailing should be considering for vibrations structures	Analyse

Coo		Pos								
Cos	1	2	3	4	5	6				
CO1	2	3	2	3	2	2				
CO2	3	3	2	2	2	3				
CO3	2	3	2	3	2	2				
CO4	3	3	2	2	2	2				
CO5	3	3	1	3	3	3				
3 - Stron	g; 2 - Medium;	1 – Some		•	•					

Assessment Pattern								
Bloom's		ssessment Tests larks)	End Sem Examination (Marks)					
Category	1	2						
Remember	10	10	20					
Understand	10	10	20					
Apply	20	20	30					
Analyse	20	20	30					
Evaluate	-	-	-					
Create	-	-	-					
Total	60	60	100					

Syllabus								
	K.S.Rangasamy College of Technology – Autonomous R2022							
	M.E - Structural Engineering							
					s for Dynai			
Semester	er Hours/Week Total Credit Maximum Marks L T P Hours C CA ES Total							
1	3	0	0	Hours 45	C 3	CA 40	ES 60	Total 100
Introduction		<u> </u>	U	45	J	40	00	100
Factors affe	ecting desig der impact OF and con	and cyclic I	oads - Rec	ap of Struc	tural dynan			[9]
Earthquake spectra me buildings - I	ainst Earth characteriz thods of est Design as p	ation - Res mating load er BIS code	ds - Respones of practic	se of frame	ed, braced fi	rames and		[9]
Displaceme	ainst Blast ent method f space truss	or three din	nensional S	tructure - C	oordinate tr	ansformation	ons -	[9]
elastic and	ainst Wind tics of wind Aerodynan oach - tall b	nic effects	- Design a	s per BIS				[9]
Special Co Energy abs	nsideration sorption cap assive and a	n s eacity - Du	ctility of the	e material a		e materials		[9]
Total Decile	/ - \ -					To	otal Hours	45
1. Paula buildi	Text Book(s): 1. Paulay, .T. and Priestly, .M.N.J., "A seismic Design of Reinforced Concrete and Masonr building ", John Wiley and Sons, 2011.							-
2. DamodarasamyS.R,"Basics of Structural Dynamics and Aseismic Design", PHI Learning Pv Ltd, New Delhi, 2009.							rning Pvt	
Reference(s):								
	<i>y</i> , 0							
^{2.} 2015	2. Dowling, .C.H., "Blast vibration - Monitoring and control ", Prentice Hall Inc., Englewood Cliffs, 2015.						ood Cliffs,	
4. R.R. Craig - Structural Dynamics, John Wile 2003								

Course Contents and Lecture Schedule

S. No.	Topics	No. of hours
1.0	Introduction	
1.1	Factors affecting design against dynamic loads	1
1.2	Behaviour of concrete, steel, masonry	2
1.3	Behaviour of soil under impact and cyclic loads	2
1.4	Recap of Structural dynamics with reference to SDOF	1
1.5	Recap of Structural dynamics with reference to MDOF	1
1.6	Recap of Structural dynamics with reference to continuum systems	1
1.7	Ductility and its importance	1
2.0	Design Against Earthquakes	
2.1	Earthquake characterization	1
2.2	Response spectra	1
2.3	seismic co-efficient	1
2.4	response spectra methods of estimating	1
2.5	loads	1
2.6	Response of framed, braced frames and	1
2.7	shear wall buildings	1
2.8	Design as per BIS codes of practice	1
2.9	Ductility based design	1
3.0	Design Against Blast And Impact	
3.1	Displacement method for Structure	1
3.2	Displacement method for three dimensional Structure	2
3.3	Coordinate transformations	2
3.4	Analysis of space trusses	2
3.5	Analysis of space frames	2
4.0	Design Against Wind	
4.1	Characteristics of wind	1
4.2	Basic and Design wind speeds	1
4.3	Pressure coefficient	1
4.4	Aero elastic and Aerodynamic effects	2
4.5	Design as per BIS code of practice including Gust Factor approach	1
4.6	tall buildings,	1
4.7	stacks	1
4.8	chimneys	1
5.0	Special Considerations	
5.1	Energy absorption capacity	2
5.2	Ductility of the material and the structure	2
5.3	Detailing for ductility	1
5.4	Passive and active control of vibrations -	2
5.5	New and favorable materials	2

Course Designer

1. Dr.D.Sivakumar - <u>sivakumard@ksrct.ac.in</u>

70 PSE E15	Fracture Mechanics of Concrete Structures	Category	L	Т	Р	Credit
		PE	3	0	0	3

- To give an outline of the total field of fracture mechanics
- To familiarize students with problems that can be solved with fracture mechanics concepts.
- To impart knowledge on the mechanisms of failure and non linear fracture mechanics.
- To study crack criteria by using Griffith's Criteria, Stress Intensity Factors, R curves.
- To apply crack concepts & numerical modelling to high strength concrete & fibre reinforced concrete.

Pre-requisites

Fundamentals of Mathematics, knowledge of basic strength of material.

Course Outcomes								
On the su	On the successful completion of the course, students will be able to							
CO1	Evaluate the fracture failure parameters	Apply						
CO2	Evaluate the linear elastic fracture mechanics problems	Analyse						
CO3	Explain the concept of elastic plastic fracture mechanics	Analyse						
CO4	Estimate the residual life of fatigue Crack Growth in structure.	Apply						
CO5	Evaluate the fracture parameters using direct and indirect methods	Analyse						

Cos	Pos								
COS	1	2	3	4	5	6			
CO1	2	2	3	ı	2	-			
CO2	2	2	3	-	2	-			
CO3	1	2	-	3	2	3			
CO4	2	2	3	3	2	3			
CO5	2	2	3	2	3	2			
3 - Strong; 2 - Medium; 1 – Some									

Bloom's		sessment Tests arks)	End Sem Examination (Mark	
Category	1	2		
Remember	10	10	20	
Understand	10	10	20	
Apply	20	20	30	
Analyse	20	20	30	
Evaluate	-	-	-	
Create	-	-	-	
Total	60	60	100	



Syllabus										
K.S.Rangasamy College of Technology – Autonomous R2022										
M.E - Structural Engineering										
		70	PSE E15 -	Fracture M	echanics of	of Concrete	Structure	s		
Semester Hours/Week Total Credit Maximum Mar								Marks		
Sem	L I P Hours C CA ES									
		3	0	0	45	3	40	60	100	
Intro	ductio	n:								
Cour	ses of	failures of	structures –	case studie	es Fracture	Mechanics	Approach	to Design:	[0]	
Ener	gy Crite	erion – Stre	ess intensity	y approach	- Time de	pendent cra	ack growth	 Effect of 	[9]	
		perties on					_			
Line	ar Elas	tic Fractui	e Mechani	cs:						
				s concentrat						
				tical Stress					[9]	
				ind the R Ci		ss analysis	of cracks –	Crack tip		
				/lixed mode	fracture.					
			ture Mecha							
				J contour					[9]	
			Crack tip co	nstraint und	ler large –s	cale yieldin	g – Sealing	model for	[-]	
	age fra									
			Dependent							
				rest – Cre					[9]	
				Fracture m	necnanisms	in metais	s, plastics,	ceramics,		
			d concrete							
		to Structi		cs – Elast	ia plaatia	l into are	al analysis	Cailura		
				ion to wel					[9]	
				ctile –Tearin					[a]	
				jation – Env						
IVICCI	iailics	- i aligue c	rack propag	jation – Liiv	IIOIIIIIGIII	y assisted t		otal Hours	45	
Text	Book(e).					- 10	/(ai i i oui o	70	
			racture Me	chanics Fu	ndamentals	and Applic	ations" Ta	ylor & Franc	cis Group	
1.	2015.		ractare me	onamoo r ai	naamoma.	and Applic	ationo, ra	yioi a i iain	olo Group,	
2.										
	Reference(s):									
	David Broek , Sijthoff&Noordhoff .,"Elementary engineering fracture mechanics" , Alphen aan									
1.										
	Netherlands, 2012									
	Fracture mechanics of concrete structures. Theory and applications. Pilem Penort. Edite							t – Edited		
2.	by Chapman and Hall – 1989.									
2					oncrete – E	Edited by V	ictor, C. Li,	& Z.P. Baz	ant – ACI	
3.	SP 11									
4.	Vallia	ppan S. "C	ontinuum M	echanics F	undamenta	ls" (1982), (Oxford IBH,	N D. New D	Delhi.	

Course Contents and Lecture Schedule No. of S. No. **Topics** hours 1.0 Introduction Review of Engineering Failure Analysis 1.1 1.2 Brittle fracture-Ductile fracture 1 Modes of fracture failure 1.3 1 The Griffith energy Balance Approach 1.4 2 1.5 Crack tip Plasticity 2 Fracture toughness 2 1.6 **Linear Elastic Fracture Mechanics** 2.0 2.1 Elastic crack tip stress field 1 2.2 Stress and displacement fields in isotropic elastic materials 1 2.3 Westergaard's approach (opening mode) 1 2.4 Plane Strain Fracture toughness (KIC) testing 1 2.5 Feddersen approach 1 2.6 Determination of R curve. 1 2.7 Energy released rate for DCB specimen 1 2.8 Anelastic deformation at crack tip 1 2.9 Test techniques, Various test specimens 1 3.0 **Elastic – Plastic Fracture Mechanics:** 3.1 Critical energy release rate 2 3.2 limitation of K approach 2 3.3 Approximate shape and size of the plastic zone 1 Effective crack length 3.4 1 3.5 Effect of plate thickness 1 3.6 1 Elastic plastic fracture concept 3.7 Crack tip opening displacement 1 4.0 **Dynamic and Time – Dependent Fracture:** 4.1 Fatigue crack growth to sharpen the tip 4.2 Load displacement test 2 4.3 Test methods to determine J1c 1 4.4 Mechanism of Fatigue ,Fatigue crack propagation 1 4.5 Paris law 1 Crack closure mechanism 4.6 1 4.7 Residual stresses at crack tip 1 5.0 **Application to Structures:** 5.1 Principles of crack arrest, crack arrest in practice 2 5.2 K-R Curves, Crack resistance curve 1 5.3 Numerical Methods and Approaches in Fracture Mechanics 1 5.4 Direct methods to determine fracture parameters 1 5.5 Indirect methods to determine fracture parameters 1 variable amplitude service loading, Interaction effects. 5.6 1 Fatigue crack growth test, stress intensity factor, factors affecting stress 1 5.7 intensity factor 5.8 Retardation effect 1

Course Designer

1. Dr.K. Vijaya Sundravel - vijayasundravel@ksrct.ac.in

70 PSE E16	Design of Formwork	Category	٦	Т	Р	Credit
		PC	3	0	0	3

- To provide a comprehensive understanding of the fundamental principles of formwork, including its importance, objectives, and key cost-reduction strategies in construction.
- To equip learners with knowledge of different types of formwork materials and systems, including their advantages, limitations, and applications in various structural elements.
- To develop the ability to apply formwork design principles in practical scenarios, ensuring the safe and efficient construction of foundations, walls, columns, slabs, and beams.
- To analyze the formwork requirements for complex structures, such as shells, domes, folded plates, overhead water tanks, cooling towers, and bridges.
- To identify the common causes of formwork failures, study case examples, and develop strategies for effective formwork management and risk mitigation in construction projects.

Pre-requisites

Basic knowledge of civil engineering

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Recall the fundamental principles of formwork, including its importance, objectives, and key cost-reduction strategies.	Remember
CO2	Gain knowledge of different formwork, including their advantages and limitations.	Remember
CO3	Learn the principles of formwork design and its application	Remember
CO4	Explain the formwork requirements for complex structures	Understand
CO5	Identify common causes of formwork failures and analyze case studies on failure incidents.	Analyze

Mapping with Programme Outcomes

Coo		Pos							
Cos	1	2	3	4	5	6			
CO1	3	-	-	-	-	-			
CO2	3	-	-	-	3	-			
CO3	3	-	-	-	3	-			
CO4	3	-	-	-	3	-			
CO5	3	-	-	-	-	-			
3 - Strong; 2 - Medium; 1 – Some									

Bloom's	Continuous Assess	ment Tests (Marks)	Model	End Sem	
Category	1 2		Examination (Marks)	Examination (Marks)	
Remember	10	10	30	30	
Understand	10	10	20	20	
Apply	20	20	30	30	
Analyse	20	20	20	20	
Evaluate	-	-	-	-	
Create	-	-	-	-	
Total	60	60	100	100	

Syllabus								
	K.S.Rangasamy College of Technology – Autonomous R2022							
			M.E. Struct	tural Engir	neering			
		70	PSE E16 -	Design of I	ormwork			
Semest	er	Hours/Wee	k	Total	Credit	Ма	ximum Maı	rks
Ocinicat	L	Т	Р	Hours	С	CA	ES	Total
	3	0	0	60	3	40	60	100
Introduction General objectives of formwork building - Development of a Basic System - Key Areas of cost reduction - Requirements and Selection of Formwork.						[9]		
Timber, Formwork	Formwork Materials and Types* Timber, Plywood, Steel, Aluminium, Plastic, and Accessories. Horizontal and Vertical Formwork Supports. Flying Formwork, Table Form, Tunnel Form, Slip Form, Formwork for Precast Concrete.						[9]	
	, , , , , , , , , , , , , , , , , , , ,					[9]		
	'k Design for S omes, Folded F	-		Tanks, Natu	ıral Draft Co	ooling Towe	er, Bridges	[9]
Formwork	Formwork Failures						[9]	
						Total	Hours:45	45
Text Boo	k(s):							
	1. Hurd. M.K., "Formwork for Concrete", Special Publication, 5th Edition American Concrete Institute, Detroit, 2003.						Concrete	
2.	Austin. C.K., "Formwork for Concrete", Cleaver- Hume Press Itd., London 2006							
Referenc	e(s):							
1.	Formwork for Concrete Structures, R.L.Peurifoy, McGraw Hill India, 2010.							
2.	Formwork for Concrete Structures, Kumar NeerajJha, Tata McGraw Hill Education, 2012.							
3.	IS 14687: 1999	, False work	for Concret	te Structure	s - Guidelin	es, BIS.		
4.	Michael P. Hurst, Construction Press, London and New York, 2003.							

^{*} SDG 9: Industry, innovation and infrastructure

Course 0	Contents and Lecture Schedule	
S. No.	Topics	No. of
	T .	hours
1.0	Introduction	
1.1	Introduction to Formwork and Its Importance	1
1.2	Objectives of Formwork in Construction	1
1.3	Development of a Basic Formwork System	1
1.4	Key Areas of Cost Reduction in Formwork	1
1.5	Selection Criteria for Formwork Systems	1
1.6	Types of Loads Acting on Formwork	1
1.7	Safety Considerations in Formwork Design	1
1.8	Sustainability and Environmental Impact of Formwork	1
1.9	Recent Innovations in Formwork Technology	1
2.0	Formwork Materials and Types	
2.1	Overview of Formwork Materials and Their Properties	1
2.2	Timber and Plywood Formwork – Advantages and Limitations	1
2.3	Steel and Aluminum Formwork – Features and Applications	1
2.4	Plastic and Composite Formwork – Benefits and Challenges	1
2.5	Accessories Used in Formwork Construction	1
2.6	Horizontal Formwork Supports – Beams and Slabs	1
2.7	Vertical Formwork Supports – Walls and Columns	1
2.8	Flying Formwork and Table Formwork – Working and Uses	1
2.9	Tunnel Form, Slip Form, and Precast Concrete Formwork	1
3.0	Formwork Design	
3.1	Introduction to Formwork Design Concepts	1
3.2	Loads and Stresses Acting on Formwork Structures	1
3.3	Structural Requirements and Stability of Formwork	1
3.4	Design of Formwork for Foundations	1
3.5	Design of Formwork for Walls and Columns	1
3.6	Design of Formwork for Slabs and Beams	1
3.7	Formwork for High-Rise Buildings – Challenges and Considerations	1
3.8	Design Optimization and Efficiency in Formwork Systems	1
3.9	Software and Tools for Formwork Design	1
4.0	Formwork Design for Special Structures	
4.1	Introduction to Special Structures and Formwork Needs	1
4.2	Formwork for Shell Structures – Design Considerations	1
4.3	Formwork for Domes and Folded Plates	1
4.4	Formwork for Overhead Water Tanks – Challenges and Solutions	1
4.5	Natural Draft Cooling Tower – Formwork Methodology	1
4.6	Bridge Formwork – Cantilever and Suspension Systems	1
4.7	Innovative Formwork Techniques for Special Structures	1
4.8	Prefabrication and Modular Formwork in Special Structures	1
4.9	Case Studies on Unique Formwork Applications	1
5.0	Formwork Failures	•
5.1	Introduction to Formwork Failures – Causes and Effects	1
5.2	Common Structural Failures in Formwork and Prevention Methods	1
5.3	Case Studies on Major Formwork Failures in Construction	1
5.4	Quality Control Measures in Formwork Construction	1
5.5	Risk Management and Safety in Formwork Operations	1
5.6	Pre-Award and Post-Award Formwork Management Strategies	1
5.7	Challenges in Multi-Story Building Formwork Construction	1
5.8	Inspection and Maintenance of Formwork Systems	1
5.9	Future Trends in Formwork Failures and Safety Improvements	1
	in the second se	

Course Designer(s)

1. Dr.K. Yuvaraj

- yuvarajk@ksrct.ac.in

70 PSE E21	Structural Health Monitoring	Category	L	Т	Р	Credit
		PE	3	0	0	3

- To learn the concept of structural health monitoring
- To acquire knowledge on structural audit
- To understand the static field testing procedures
- To learn the dynamic field testing procedures
- To apply various repair techniques in structures

Pre-requisites

Courses - Construction Materials & Practices, Concrete Technology and Basic Sciences

Course C	Outcomes	
On the su	ccessful completion of the course, students will be able to	
CO1	Understand the concept and measures of structural health monitoring	Apply
CO2	Investigate the health of structure using SHM procedures	Analyse
CO3	Examine the health of structure using static field test	Analyse
CO4	Assess the health of structure using dynamic field test	Apply
CO5	Apply suitable repair and rehabilitation techniques	Analyse

Coo			Po	S		
Cos	1	2	3	4	5	6
CO1	3	2	2	3	3	2
CO2	3	3	3	3	3	2
CO3	3	3	3	3	3	2
CO4	3	3	3	3	3	2
CO5	3	3	3	3	3	3
3 - Stron	g; 2 - Medium;	1 – Some				

Assessment Pattern						
Bloom's		ssessment Tests arks)	End Sem Examination (Marks)			
Category	1	2				
Remember	10	10	20			
Understand	10	10	20			
Apply	20	20	30			
Analyse	20	20	30			
Evaluate	-	-	-			
Create	-	-	-			
Total	60	60	100			

Syllabus								
K.S.Rangasamy College of Technology – Autonomous R2022								
	M.E - Structural Engineering							
		70 PS	E E21 -Str	uctural Hea	alth Monito	ring		
Semes	Hours/Week Total Credit Maximum Ma							rks
Jeilles	L I P Hours C CA ES							
II	3	0	0	45	3	40	60	100
	ıral Health							
	affecting Healing structural							[9]
Alteration	on.		·				-	
	ıral Audit							
	ment of Health		, Collapse a	and Investig	ation, Inves	stigation		[9]
Manage	ement, SHM Pro	ocedures						
	Field Testing							
	of Static Tests -							[9]
	g Methods, Sen	sor systems	and hardw	are require	ments, Stat	ic Respons	е	[0]
Measur								
	i ic Field Testin of Dynamic Field		see Hietory	Test Dyna	mic Pasnon	se Methods	s Ambient	
	on test, Pull-ba							[9]
	ral Health Monit		awaro ioi	rtomoto Bt	ata 7 toquion	John Gyoton	10,1 (0111010	
	s and Rehabilit		tructures					
	tudies (Site Vis			aterials and	d other sma	rt materials	s, Electro–	[9]
mechar	nical impedance	e (EMI) tech	nique, Ada <mark>r</mark>	otations of E	EMI techniqu			
						To	otal Hours	45
Text Bo	· /							
	Daniel Balagea		PeterFritzer	n, Alfredo	Güemes,	Structural	Health M	lonitoring,
J	JohnWiley and Sons, 2006							de e el e i i i i i i
Z. A	Applications", John Wiley and Sons, 2007							
Reference(s):								
1. Daniel Balageas, Claus-Peter Fritzen, Alfredo Güemes, Structural Health Monitoring, Wiley , ISTE, 2006								
	O ,							
	B. Handbook on Repair & Rehabilitation of R.C.C. Buildings, CPWD, Govt of India, 2011							
	Structural Health							
	nd Internationa			ural Health	Monitoring	of Intellige	nt Infrastruc	ture, Nov.
1	16-18, 2005, Shenzhen, China							

Course Contents and Lecture Schedule

S. No.	Topics	No. of hours
1.0	Structural Health	
1.1	Introduction to Structural health monitoring	1
1.2	Factors affecting Health of Structures	1
1.3	Causes of Distress	1
1.4	Regular Maintenance and monitoring	2
1.5	Concepts in Structural monitoring	1
1.6	Various measures in structural monitoring	2
1.7	Structural Safety in Alteration.	1
2.0	Structural Audit	<u>.</u>
2.1	Structural Audit – Introduction & Importance	1
2.2	Need for Assessment of Structure and Damage identification	1
2.3	Assessment of Health of Structure	1
2.4	Collapse and Investigation	2
2.5	Investigation Management	1
2.6	SHM Procedures	2
2.7	Role of sensors in SHM	1
3.0	Static Field Testing	•
3.1	Static field testing - Concept and types	1
3.2	Behavior test - Procedure& Applications	1
3.3	Diagnostic test - Procedure& Applications	1
3.4	Proof load test - Procedure& Applications	1
3.5	Simulation and loading methods for SHM	2
3.6	Sensor Systems & Hardware requirements	2
3.7	Static response measurement	1
4.0	Dynamic Field Testing	•
4.1	Dynamic field testing - Concept and types	1
4.2	Stress history test	1
4.3	Dynamic Load Allowance test	2
4.4	Ambient Vibration test	1
4.5	Pull-back test	1
4.6	Hardware for Remote Data Acquisition Systems	1
4.7	Remote Structural Health Monitoring.	2
5.0	Repairs and Rehabilitations of Structures	
5.1	Introduction to Repairs and Rehabilitations of Structures	1
5.2	Case Studies	2
5.3	Piezo - electric materials	2
5.4	Smart materials	2
5.5	Electro–mechanical impedance (EMI) technique,	1
5.6	Adaptations of EMI technique	1

Course Designer

Mr.K.Angu Senthil - angusenthil@ksrct.ac.in

70 PSE E22	Design of Sub Structures	Category	L	Т	Р	Credit
		PE	3	0	0	3

- To impart knowledge in the selection of sites for investigate and procedure of sub surface exploration
- To determine the soil condition and provide the suitable foundation.
- To design the pile foundation based on capacity of super structure.
- To understand different types of foundations and their designing methods.
- Laying foundation for other miscellaneous structures like towers and different types of machine foundations and their design.

Pre-requisites

Basic knowledge of Soil Mechanics, Geology & Mathematical

Course Outcomes

On the successful completion of the course, students will be able to

CO1	State the knowledge on soil exploration	Apply
CO2	Analysis the concepts of safe bearing capacity of shallow foundation	Analyse
CO3	Explain pile foundation and their types	Understand
CO4	Estimation the well foundations and sheet pile wall	Analyse
CO5	Identify the general analysis of machine foundation and soil dynamics	Apply

Cos	Pos							
Cos	1	2	3	4	5	6		
CO1	3	3	2	3	2	3		
CO2	3	2	3	2	3	2		
CO3	3	3	2	3	2	3		
CO4	2	2	2	2	2	2		
CO5	3	3	2	3	2	3		
3 - Strong; 2 - Medium; 1 – Some								

Assessment Pattern						
Bloom's		sessment Tests arks)	End Sem Examination (Mark			
Category	1	2				
Remember	10	10	20			
Understand	10	10	20			
Apply	20	20	30			
Analyse	20	20	30			
Evaluate	-	-	-			
Create	-	-	-			
Total	60	60	100			

Syllabus									
K.S.Rangasamy College of Technology – Autonomous R2022									
M.E - Structural Engineering									
70 PSE E22 -Design of Sub Structures Hours/Week Total Credit Maximum Marks									
Semester	ŀ	Hours/Week			Credit				
	L	T	Р	Hours	С	CA	ES	Total	
	3	0	0	45	3	40	60	100	
Sub Surface Exploration Purpose - Programme and Procedures - Sampling- Exploration- soil data and Bore-hole [9]									
Purpose - Programme and Procedures – Sampling- Exploration- soil data and Bore-hole									
log reports. Shallow Foundations									
Types of foundations and their specific applications – depth of foundation – bearing									
	, , , ,								
	acity and settlement estimates (Plate load) – structural design of isolated footings, [9] b, rectangular and trapezoidal combined footings – strap– raft foundation –								
	proximate flexible method of raft design.								
Deep Foundations									
Types of Piles and their applications - Pile capacity - Settlement of piles - Pile group -								[9]	
Structural design of piles and pile caps.									
Foundations for Other Miscellaneous Structures									
Design of Caissons and Well foundations - Foundations for towers -Sheet Pile wall-								[9]	
Coffer dams.									
Machine Foundations									
	Types - General requirements and design criteria - General analysis of machine								
foundations-Soil Dynamics – Vibration isolation - Guide lines for design of reciprocating engines, impact type machines, rotary type machines, framed foundations.								[9]	
Total Hours								45	
Text Book(s):								40	
Swamy Saran "Analysis and Design of Substructures" Oxford and IBH Publishing Co.									
	Pvt.Ltd., New Delhi,2018.								
2. Ven	Venkatramaiah.C, "Geotechnical Engineering", New Age International Ltd., New Delhi, 2016.								
Reference(s):									
	Thomlinson, M.J. and Boorman. R. "Foundation Design and Construction", ELBS Longman VI								
200	2005								
	Nayak, N.V., "Foundation Design manual for Practicing Engineers", Dhanpat Rai							and Sons,	
200	2009.								
.5	Winterkorn H.F., and Fang H.Y., "Foundation Engineering Hand Book - Vanl								
Reir	Reinhold - 2006.							2044	
4. Brai	Brain J Bell and Smith M.J. "Reinforced Concrete Foundations" George Godwin Ltd., 2011.								

Course Contents and Lecture Schedule

S. No.	Topics	No. of hours
1.0	Sub Surface Exploration	•
1.1	Purpose	1
1.2	Programme and Procedures	2
1.3	Sampling	1
1.4	Exploration	2
1.5	soil data	1
1.6	Bore-hole log reports	2
2.0	Shallow Foundations	
2.1	Types of foundations and their specific applications	1
2.2	depth of foundation	1
2.3	bearing capacity and settlement estimates (Plate load)	1
2.4	structural design of isolated footings,	1
2.5	structural design of strip, rectangular and trapezoidal combined footings	2
2.6	structural design of strap – raft foundation	2
2.7	Approximate flexible method of raft design.	1
3.0	Deep Foundations	•
3.1	Types of Piles	1
3.2	Pile applications	1
3.3	Pile capacity	1
3.4	Settlement of piles	2
3.5	Pile group	2
3.6	Structural design of piles	1
3.7	pile caps	1
4.0	Foundations for Other Miscellaneous Structures	
4.1	Design of Caissons	2
4.2	Design of Well foundations	2
4.3	Foundations for towers	2
4.4	Sheet Pile wall	2
4.5	Coffer dams	1
5.0	Machine Foundations	
5.1	Types	1
5.2	General requirements and design criteria -	1
5.3	General analysis of machine foundations	1
5.4	Soil Dynamics	1
5.5	Vibration isolation	1
5.6	Guide lines for design of reciprocating engines,	1
5.7	impact type machines,	1
5.8	rotary type machines,	1
5.9	framed foundations	1

Course Designer

Dr.D.Sivakumar - <u>sivakumard@ksrct.ac.in</u>

70 PSE E23	Structural Optimization	Category	L	Т	Р	Credit
		PE	3	0	0	3

- To explain basics concepts of optimizing in structural design.
- To develop optimization techniques, and application of algorithms.
- To understand linear Programming methods for plastic design of frames.
- To apply Optimization theorems and using several methods.
- To evaluate different types of non traditional optimization techniques.

Pre-requisites

Basic knowledge of Soil Mechanics, Geology & Mathematical

Course (Course Outcomes						
On the su	On the successful completion of the course, students will be able to						
CO1	Apply the knowledge on the recent advances in optimization.	Apply					
CO2	Write algorithm for Geometric and Dynamic programming.	Analyse					
CO3	To know the basis of univariate and multivariate minimization.	Understand					
CO4	Understand the concepts of optimization structural theorems.	Analyse					
CO5	Understand the concepts of optimization problems in the Structural	Apply					
COS	Engineering						

Cos		Pos								
	1	2	3	4	5	6				
CO1	3	3	2	3	2	3				
CO2	3	2	3	2	3	2				
CO3	3	3	2	3	2	3				
CO4	2	2	2	2	2	2				
CO5	3	3	2	3	2	3				
3 - Stron	3 - Strong; 2 - Medium; 1 – Some									

Assessment Pattern								
Bloom's		ssessment Tests arks)	End Sem Examination (Marks)					
Category	1	2						
Remember	10	10	20					
Understand	10	10	20					
Apply	20	20	30					
Analyse	20	20	30					
Evaluate	-	-	-					
Create	-	-	-					
Total	60	60	100					

Syllabus								
K.S.Rangasamy College of Technology – Autonomous R2022								
	M.E - Structural Engineering							
				Structural (•	n		
Semester	, <u> </u>	lours/Weel		Total	Credit		ximum Mar	
	L	Т	Р	Hours	С	CA	ES	Total
<u>II</u>	3	0	0	45	3	40	60	100
Introduct Basic con classical r	cepts of mini	mum weigh	t, minimum	cost desigi	n, objective	function, c	onstraints,	[9]
Linear programmelements.	i on Techniq programming ning and ge	, Integer ometric Pro	Programm					[9]
Linear Pro	r Search Me gramming m ariate Minim	ethods for p	olastic desig	gn of frames	s. Computer	search for	univariate	[9]
Optimizati	i on Theore n on by struct nd frames, fu	tural theore						[9]
Non-Trad Methods	itional Optin land on natio Hand simula	onal evolution	on – Genet		n – simulato	ed annealir	ıg – Truss	[9]
						To	otal Hours	45
Text Boo								
	lers, William ., S.S., " Opt						l, New Delhi	, 1995.
Reference(s):								
1. Christensen, Peter, Klarbring, Anders, "An Introduction to Structural Optimization", 2009, Springer.								
2. Rao, S.S., Optimization Theory and Applications" Wiley Eastern Ltd., New Delhi, 1978.							3.	
	id, K.I., "Optii							
	egher, R.H. ory and Appl				ey and Sor	ns, "Optimu	ım Structura	l Design,

Course Contents and Lecture Schedule

S. No.	Topics	No. of hours
1.0	Introduction	•
1.1	Basic concepts of minimum weight	1
1.2	Basic concepts of minimum cost design	2
1.3	Objective of Cost design	1
1.4	Functions	2
1.5	constraints	1
1.6	Classical methods	2
2.0	Optimization Techniques And Algorithms	
2.1	Basics of Optimization Techniques	1
2.2	Linear programming methods for optimal design of structural elements	1
2.3	Integer Programming methods for optimal design of structural elements	1
2.4	Quadratic Programming methods for optimal design of structural elements	2
2.5	Dynamic Programming, methods for optimal design of structural elements	2
2.6	Geometric Programming methods for optimal design of structural elements	2
3.0	Computer Search Methods	•
3.1	Linear Programming methods for plastic design of frames	1
3.2	Concepts of Plastic design of frames	1
3.3	Computer search for univariate Minimization	1
3.4	Computer search for multivariate Minimization	2
3.5	Problems in Univariate Minimization	2
3.6	Problems in mutitivariate minimization	2
4.0	Optimization Theorems	•
4.1	Optimization by structural theorems	2
4.2	Maxwell Theorems for trusses and frames	1
4.3	Mitchell Theorems for trusses and frames	1
4.4	Heyman's Theorems for trusses and frames	1
4.5	Fully stressed design with deflection constraints	2
4.6	optimality criterion methods	2
5.0	Non-Traditional Optimization Techniques	•
5.1	Methods on national evolution	1
5.2	Genetic Algorithm	1
5.3	Simulated annealing	1
5.4	Truss problem	2
5.5	Hand simulation for simple problems	2
5.6	Simple problems in Non-traditional optimization techniques	2

Course Designer

Dr. J.Abdul Bari- abdulbari@ksrct.ac.in

70 PSE E24	Bridge Engineering	Category	L	Т	Р	Credit
		PE	3	0	0	3

- To identify the Classification of bridges
- To understand the roads on bridges, design of solid slab, bridges, R.C. girder bridges, long span girder bridge and plate girder bridges.
- To Design of prestressed concrete bridges.
- To learn bearing, sub structures and footings for bridges.
- To discuss about construction and maintenance of bridges.

Pre-requisites

Basic knowledge of RCC, Steel Structures and Prestressed Concrete & Concrete Technology

Course Outcomes							
On the su	On the successful completion of the course, students will be able to						
CO1	List out the components and classification of a bridge.	Apply					
CO2	Design a deep foundation and well foundation.	Analyse					
CO3	List out the different forms of reinforced bridges.	Understand					
CO4	List out the different forms of steel bridges.	Analyse					
CO5	Show the rehabilitation for bridges.	Apply					

Cos	Pos							
	1	2	3	4	5	6		
CO1	3	3	2	3	2	3		
CO2	2	3	3	2	2	2		
CO3	3	3	-	3	2	3		
CO4	3	3	2	2	2	3		
CO5	3	3	2	1	3	3		
3 - Strong; 2 - Medium; 1 – Some								

Assessment Pattern							
Bloom's		sessment Tests arks)	End Sem Examination (Marks)				
Category	1	2					
Remember	10	10	20				
Understand	10	10	20				
Apply	20	20	30				
Analyse	20	20	30				
Evaluate	-	-	-				
Create	-	-	-				
Total	60	60	100				

Syllabus										
	K.S.F	Rangasamy	/ College o	f Technolo	gy – Autor	nomous R2	022			
	M.E - Structural Engineering									
70 PSE E24- Bridge Engineering										
Semest	H	lours/Wee	k	Total	Credit	Ma	ximum Mar	ks		
Semesi	L	Т	Р	Hours	C	CA	ES	Total		
ll l	3	0	0	45	3	40	60	100		
Introdu	ction									
	n and compone									
	ation of a bride							[9]		
_	c design of a l	oridge – tra	ıffic design	loading -	- highway a	and railway	loading –			
specifica										
	s of Substruct				_		_			
	and design									
	on – pile found							[9]		
	bearing - stee		d roller bea	rıngs – rein	forced cond	crete rocker	and roller			
	- elastomeric									
	s of Superstru			a buidaa. Ot			a de alca			
	ed concrete ar f various types									
	ı vanous types ı slab bridge –									
	nd slab bridge -							[9]		
	d Cantilever br									
	- Pre-stressed									
	loading.	331.313	9-	,	g		- · · · · · · · · · · · · · · · · · · ·			
Steel B										
	rder bridge –	box girder	bridge –	composite	beam brid	ge – truss	bridge –	[0]		
	e lines for for							[9]		
analysis	for static, mov	ing and dyr	amic loadir	ıg.		-	•			
Constru	ction And Ma	intenance								
	ction methods							[9]		
	tion managen					sson from	bridge –	[0]		
rehabilit	ation of a bridg	e failures –	load testing	g of bridges.	•					
	17.					To	tal Hours	45		
Text Bo		"D =		T.1. 11 C	1222 E	1	D. II. 2042			
	onnuswamy, S.									
	aylor, F.W., The			ıskı, Ł., "Re	intorced Co	oncrete Brid	ges", John \	viley and		
Sons, Newyork, 2005. Reference(s):										
	ce(s): inson Victor, D	"Eccontic	ale of Dride	o Engineeri	na" Ovford	ויט חסו איי	olichina Ca	Dvt 1+4		
	ew Delhi, 2009		ais oi biidgi	e Engineen	ng , Oxiord	I OLIDIT PUL	onstilling Co.	rvi. Liu.,		
	rishna Raju, N.,		Bridge" O	vford Public	hing Co Pyr	t I td Now	Delhi 2008			
	akht B and Ja									
	udnets' edition			CON Allalys	is omipine	u , wicorav	v — 1 iiii, iiild	omanonal		
				Tata McGra	aw – Hill Pu	hlishing Co	New Delhi	2001		
4. Raina, V.K. "Concrete Bridge Practice" Tata McGraw – Hill Publishing Co, New Delhi.2001.										

S. No. Topics No. of hours	Course Contents and Lecture Schedule							
1.0 Introduction 1.1 Definition and components of a bridge 1.2 layout and planning of a bridge 1.3 classification 1.4 investigation of a bridge 1.5 preliminary data collection 1.6 choice and type of a bridge 1.7 hydraulic design of a bridge 1.8 traffic design 1.8 traffic design 1.9 loading – highway and railway loading – specification 1.1 danalysis of Substructure 2.1 Analysis and design of foundation 2.2 shallow foundation – open foundation 2.3 deep foundation – pile foundation 2.4 well foundation – pile foundation 2.5 piers and abutments – bridge bearing 2.6 steel rocker and roller bearings 2.7 reinforced concrete rocker and roller bearings 2.8 elastomeric bearings 3.0 Analysis of Superstructure 3.1 Reinforced concrete and reller bearings 1.1 reinforced concrete and roller bearings 1.3 staight and curved bridge decks - decks of various types 1.3 Straight and curved bridge decks - decks of various types 1.3 Reinforced concrete slab bridge – load distribution – Pigeaud's theory – skew slab deck 3.6 Reinforced concrete slab bridge – continuous beam bridge – fixed point method 3.7 box girder bridge – bow string girder bridge 4.1 Plate girder bridge – sanlysis and design for static, moving and dynamic loading 4.1 Plate girder bridge – composite beam bridge 4.2 box girder bridge – composite beam bridge 4.3 truss bridge – influence lines for forces in members 2.4 suspension bridge 4.5 cable stayed bridge 4.6 analysis for static, 4.7 moving and dynamic loading 5.1 Construction methods 5.2 short span – long span 5.3 false work for concrete bridges 5.4 construction management 5.5 inspection and maintenance 5.6 lesson from bridge 6.7 rehabilitation of a bridge failures	S. No.	Topics	No. of hours					
1.1 Definition and components of a bridge 1.2 Isyout and planning of a bridge 1.3 classification 1.4 investigation of a bridge 1.5 preliminary data collection 1.6 choice and type of a bridge 1.7 hydraulic design of a bridge 1.7 hydraulic design of a bridge 1.8 traffic design 1.9 loading – highway and railway loading – specification 1.9 loading – highway and railway loading – specification 1.0 Analysis of Substructure 1.1 Analysis and design of foundation 1.2.1 Analysis and design of foundation 1.2.2 shallow foundation – popen foundation 1.2.3 deep foundation – pile foundation 1.2.4 well foundation – pair foundation 1.2.5 piers and abutments – bridge bearing 1.2.6 steel rocker and roller bearings 1.2.7 reinforced concrete rocker and roller bearings 1.2.8 elastomeric bearings 1.0 Analysis of Superstructure 1.1 Reinforced concrete and prestressed concrete bridge: 1.1 Reinforced concrete and prestressed concrete bridge: 1.2 Straight and curved bridge decks – decks of various types 1.3 slab hollow and voided slab – bear – slab box 1.4 Reinforced concrete slab bridge – load distribution – Pigeaud's theory – skew slab deck 1.5 RC tee beam and slab bridge – continuous beam bridge – fixed point method 1.6 Influence lines – balanced Cantilever bridge – rigid frame bridge – 1.7 Plate girder bridge – bow string girder bridge 1.7 Plate girder bridge – bow string girder bridge – shall the string and dynamic loading 1.0 Steel Bridge 1.1 Plate girder bridge – composite beam bridge 1.1 Plate girder bridge – composite beam bridge 1.2 box girder bridge – composite beam bridge 1.3 truss bridge – influence lines for forces in members 1.5 cable stayed bridge 1.5 inspection and Maintenance 1.5 inspection and composite bear bri								
1.2 layout and planning of a bridge	1.1		1					
1.3 classification 1 1.4 Investigation of a bridge 1 1.5 preliminary data collection 1 1.6 choice and type of a bridge 1 1.7 hydraulic design of a bridge 1 1.8 traffic design 1 1.9 loading – highway and railway loading – specification 1 2.0 Analysis of Substructure 2.1 Analysis and design of foundation 1 2.2 Analysis of Substructure 2.3 deep foundation – pie foundation 1 2.2 shallow foundation – pen foundation 1 2.3 deep foundation – pie foundation 1 2.4 well foundation – caisson foundation 1 2.5 piers and abutments – bridge bearing 2 2.5 piers and abutments – bridge bearings 1 2.7 reinforced concrete rocker and roller bearings 1 3.0 Rainforced concrete and prestressed concrete bridge: 1 3.1 Reinforced concrete and prestressed concrete bridges 1			1					
1.5			1					
1.5	1.4	investigation of a bridge	1					
1.6	1.5		1					
1.8 traffic design 1 1.9 loading – highway and railway loading – specification 1 2.0 Analysis of Substructure 2.1 Analysis and design of foundation 1 2.2 shallow foundation – open foundation 1 2.3 deep foundation – pile foundation 1 2.4 well foundation – caisson foundation. 1 2.5 piers and abutments – bridge bearing 2 2.6 steel rocker and roller bearings 1 2.7 reinforced concrete rocker and roller bearings 1 2.7 reinforced concrete rocker and roller bearings 1 3.0 Analysis of Superstructure 3.1 Reinforced concrete and prestressed concrete bridge: 1 3.1 Reinforced concrete and prestressed concrete bridge: 1 3.2 Straight and curved bridge decks - decks of various types 1 3.3 slab hollow and voided slab - beam - slab box 1 3.4 Reinforced concrete slab bridge - load distribution - Pigeaud's theory - skew slab deck 1 3.5 RC lee beam and slab b	1.6	choice and type of a bridge	1					
1.9 loading - highway and railway loading - specification 1	1.7	hydraulic design of a bridge	1					
2.0 Analysis and Sedign of Foundation 1 2.1 Analysis and design of foundation 1 2.2 shallow foundation – open foundation 1 2.3 deep foundation – pile foundation 1 2.4 well foundation – caisson foundation. 1 2.5 piers and abutments – bridge bearing 2 2.6 steel rocker and roller bearings 1 2.7 reinforced concrete rocker and roller bearings 1 3.0 Analysis of Superstructure 3.1 Reinforced concrete and prestressed concrete bridge: 1 3.1 Reinforced concrete and prestressed concrete bridge: 1 3.2 Straight and curved bridge decks - decks of various types 1 3.3 slab hollow and voided slab - beam - slab box 1 3.4 Reinforced concrete slab bridge - load distribution - Pigeaud's theory - skew slab deck 1 3.5 RC tee beam and slab bridge - continuous beam bridge - fixed point method 1 3.6 influence lines - balanced Cantilever bridge - rigid frame bridge - 1 1 3.8 Pre-stressed concrete bridge - analysis an	1.8	traffic design	1					
2.1 Analysis and design of foundation 1 2.2 shallow foundation – open foundation 1 2.3 deep foundation – pile foundation 1 2.4 well foundation – caisson foundation. 1 2.5 piers and abutments – bridge bearing 2 2.6 steel rocker and roller bearings 1 2.7 reinforced concrete rocker and roller bearings 1 2.8 elastomeric bearings 1 3.0 Analysis of Superstructure 3.1 Reinforced concrete and prestressed concrete bridge: 1 3.1 Reinforced concrete and prestressed concrete bridge: 1 3.2 Straight and curved bridge decks - decks of various types 1 3.3 slab hollow and voided slab - beam - slab box 1 3.4 Reinforced concrete slab bridge - load distribution - Pigeaud's theory - skew slab deck 1 3.5 RC tee beam and slab bridge - continuous beam bridge - fixed point method 1 3.6 influence lines - balanced Cantilever bridge - rigid frame bridge - 1 1 3.8 Pre-stressed concrete bridge - analysis and design for	1.9	loading – highway and railway loading – specification	1					
2.2 shallow foundation – open foundation 1 2.3 deep foundation – pile foundation 1 2.4 well foundation – caisson foundation. 1 2.5 piers and abutments – bridge bearing 2 2.6 steel rocker and roller bearings 1 2.7 reinforced concrete rocker and roller bearings 1 2.8 elastomeric bearings 1 3.0 Analysis of Superstructure 3.1 Reinforced concrete and prestressed concrete bridge: 1 3.1 Reinforced concrete and prestressed concrete bridge: 1 3.2 Straight and curved bridge decks - decks of various types 1 3.3 slab hollow and voided slab – beam – slab box 1 3.4 Reinforced concrete slab bridge – load distribution – Pigeaud's theory – skew slab deck 1 3.5 RC tee beam and slab bridge – continuous beam bridge – fixed point method 1 3.6 influence lines – balanced Cantilever bridge – rigid frame bridge – 1 3.7 box girder bridge – bow string girder bridge – rigid frame bridge – 1 4.0 Steel Bridge	2.0							
2.3 deep foundation – pile foundation 1 2.4 well foundation – caisson foundation. 1 1 2.5 piers and abutments – bridge bearing 2 2 2.6 steel rocker and roller bearings 1 1 2.7 reinforced concrete rocker and roller bearings 1 2.8 elastomeric bearings 1 3.0 Analysis of Superstructure 3.1 Reinforced concrete and prestressed concrete bridge: 1 3.2 Straight and curved bridge decks – decks of various types 1 3.3 slab hollow and voided slab – beam – slab box 1 1 3.4 Reinforced concrete slab bridge – load distribution – Pigeaud's theory – skew slab deck RC tee beam and slab bridge – continuous beam bridge – fixed point method 1 3.7 box girder bridge – bow string girder bridge 1 3.8 Pre-stressed concrete bridge – analysis and design for static, moving and dynamic loading 2 4.0 Steel Bridge 2 4.1 Plate girder bridge – composite beam bridge 2 4.2 box girder bridge – composite beam bridge 1 4.5 cable stayed bridge 5.0 Construction And Maintenance 5.1 Construction methods 1 5.2 short span – long span 1 5.3 false work for concrete bridges 1 5.6 lesson from bridge 1 5.6 lesson from bridge 1 5.7 rehabilitation of a bridge failures 1	2.1		1					
2.4 well foundation – caisson foundation. 2.5 piers and abutments – bridge bearing 2.6 steel rocker and roller bearings 2.7 reinforced concrete rocker and roller bearings 2.8 elastomeric bearings 3.0 Analysis of Superstructure 3.1 Reinforced concrete and prestressed concrete bridge: 3.2 Straight and curved bridge decks - decks of various types 3.3 slab hollow and voided slab – beam – slab box 3.4 Reinforced concrete slab bridge – load distribution – Pigeaud's theory – skew slab deck 3.5 RC tee beam and slab bridge – continuous beam bridge – fixed point method 3.6 influence lines –balanced Cantilever bridge – rigid frame bridge – 3.7 box girder bridge – bow string girder bridge 3.8 Pre-stressed concrete bridge – analysis and design for static, moving and dynamic loading 4.0 Steel Bridge 4.1 Plate girder bridge – composite beam bridge — 1 4.3 truss bridge – influence lines for forces in members 2 box girder bridge — composite beam bridge — 1 4.5 cable stayed bridge 4.6 analysis for static, 1 4.7 moving and dynamic loading 5.0 Construction And Maintenance 5.1 Construction methods 1 cable stayed bridge — 1 5.2 short span – long span — 1 5.3 false work for concrete bridges — 1 5.4 construction management — 2 5.5 inspection and maintenance — 1 5.6 lesson from bridge — 1 5.7 rehabilitation of a bridge failures	2.2		1					
2.4 well foundation – caisson foundation. 2.5 piers and abutments – bridge bearing 2.6 steel rocker and roller bearings 2.7 reinforced concrete rocker and roller bearings 2.8 elastomeric bearings 3.0 Analysis of Superstructure 3.1 Reinforced concrete and prestressed concrete bridge: 3.2 Straight and curved bridge decks - decks of various types 3.3 slab hollow and voided slab – beam – slab box 3.4 Reinforced concrete slab bridge – load distribution – Pigeaud's theory – skew slab deck 3.5 RC tee beam and slab bridge – continuous beam bridge – fixed point method 3.6 influence lines –balanced Cantilever bridge – rigid frame bridge – 3.7 box girder bridge – bow string girder bridge 3.8 Pre-stressed concrete bridge – analysis and design for static, moving and dynamic loading 4.0 Steel Bridge 4.1 Plate girder bridge – composite beam bridge — 1 4.3 truss bridge – influence lines for forces in members 2 box girder bridge — composite beam bridge — 1 4.5 cable stayed bridge 4.6 analysis for static, 1 4.7 moving and dynamic loading 5.0 Construction And Maintenance 5.1 Construction methods 1 cable stayed bridge — 1 5.2 short span – long span — 1 5.3 false work for concrete bridges — 1 5.4 construction management — 2 5.5 inspection and maintenance — 1 5.6 lesson from bridge — 1 5.7 rehabilitation of a bridge failures	2.3	deep foundation – pile foundation	1					
2.6 steel rocker and roller bearings 2.7 reinforced concrete rocker and roller bearings 1 2.8 elastomeric bearings 3.0 Analysis of Superstructure 3.1 Reinforced concrete and prestressed concrete bridge: 3.2 Straight and curved bridge decks - decks of various types 1 3.3 slab hollow and voided slab - beam - slab box 3.4 Reinforced concrete slab bridge - load distribution - Pigeaud's theory - skew slab deck 3.5 RC tee beam and slab bridge - continuous beam bridge - fixed point method 3.6 influence lines -balanced Cantilever bridge - rigid frame bridge - 1 3.7 box girder bridge - bow string girder bridge 3.8 Pre-stressed concrete bridge - analysis and design for static, moving and dynamic loading 4.0 Steel Bridge 4.1 Plate girder bridge - composite beam bridge 4.2 box girder bridge - composite beam bridge 4.3 truss bridge - influence lines for forces in members 2 4.4 suspension bridge 4.5 cable stayed bridge 4.6 analysis for static, 4.7 moving and dynamic loading 5.0 Construction And Maintenance 5.1 Construction methods 5.2 short span - long span 5.3 false work for concrete bridges 5.4 construction management 5.5 lesson from bridge 1 5.6 lesson from bridge 1 5.7 rehabilitation of a bridge failures			1					
2.6 steel rocker and roller bearings 2.7 reinforced concrete rocker and roller bearings 1 2.8 elastomeric bearings 3.0 Analysis of Superstructure 3.1 Reinforced concrete and prestressed concrete bridge: 3.2 Straight and curved bridge decks - decks of various types 1 3.3 slab hollow and voided slab - beam - slab box 3.4 Reinforced concrete slab bridge - load distribution - Pigeaud's theory - skew slab deck 3.5 RC tee beam and slab bridge - continuous beam bridge - fixed point method 3.6 influence lines -balanced Cantilever bridge - rigid frame bridge - 1 3.7 box girder bridge - bow string girder bridge 3.8 Pre-stressed concrete bridge - analysis and design for static, moving and dynamic loading 4.0 Steel Bridge 4.1 Plate girder bridge - composite beam bridge 4.2 box girder bridge - composite beam bridge 4.3 truss bridge - influence lines for forces in members 2 2 4.4 suspension bridge 4.5 cable stayed bridge 4.6 analysis for static, 4.7 moving and dynamic loading 5.0 Construction And Maintenance 5.1 Construction methods 5.2 short span - long span 5.3 false work for concrete bridges 5.4 construction management 5.5 lesson from bridge 1 short span - long span 5.6 lesson from bridge 1 rehabilitation of a bridge failures	2.5		2					
2.8 elastomeric bearings 3.0 Analysis of Superstructure 3.1 Reinforced concrete and prestressed concrete bridge: 3.2 Straight and curved bridge decks - decks of various types 3.3 slab hollow and voided slab - beam - slab box 3.4 Reinforced concrete slab bridge - load distribution - Pigeaud's theory - skew slab deck 3.5 RC tee beam and slab bridge - continuous beam bridge - fixed point method 3.6 influence lines - balanced Cantilever bridge - rigid frame bridge - 1 3.7 box girder bridge - bow string girder bridge 1 3.8 Pre-stressed concrete bridge - analysis and design for static, moving and dynamic loading 4.0 Steel Bridge 4.1 Plate girder bridge 2 4.2 box girder bridge - composite beam bridge 1 4.3 truss bridge - influence lines for forces in members 2 4.4 suspension bridge 1 4.5 cable stayed bridge 1 4.6 analysis for static, 1 4.7 moving and dynamic loading 5.0 Construction And Maintenance 5.1 Construction And Maintenance 5.2 short span - long span 1 5.3 false work for concrete bridges 1 5.4 construction management 2 5.5 inspection and maintenance 1 5.6 lesson from bridge 1 5.7 rehabilitation of a bridge failures 1	2.6		1					
2.8 elastomeric bearings 3.0 Analysis of Superstructure 3.1 Reinforced concrete and prestressed concrete bridge: 3.2 Straight and curved bridge decks - decks of various types 3.3 slab hollow and voided slab - beam - slab box 3.4 Reinforced concrete slab bridge - load distribution - Pigeaud's theory - skew slab deck 3.5 RC tee beam and slab bridge - continuous beam bridge - fixed point method 3.6 influence lines - balanced Cantilever bridge - rigid frame bridge - 1 3.7 box girder bridge - bow string girder bridge 1 3.8 Pre-stressed concrete bridge - analysis and design for static, moving and dynamic loading 4.0 Steel Bridge 4.1 Plate girder bridge 2 4.2 box girder bridge - composite beam bridge 1 4.3 truss bridge - influence lines for forces in members 2 4.4 suspension bridge 1 4.5 cable stayed bridge 1 4.6 analysis for static, 1 4.7 moving and dynamic loading 1 5.0 Construction And Maintenance 5 5.1 Construction methods 1 5.2 short span - long span 1 5.3 false work for concrete bridges 1 5.4 construction management 2 5.5 inspection and maintenance 1 5.6 lesson from bridge 1 5.7 rehabilitation of a bridge failures		· · · · · · · · · · · · · · · · · · ·	1					
3.0 Analysis of Superstructure 3.1 Reinforced concrete and prestressed concrete bridge: 3.2 Straight and curved bridge decks - decks of various types 3.3 slab hollow and voided slab – beam – slab box 3.4 Reinforced concrete slab bridge – load distribution – Pigeaud's theory – skew slab deck 3.5 RC tee beam and slab bridge – continuous beam bridge – fixed point method 3.6 influence lines –balanced Cantilever bridge – rigid frame bridge — 3.7 box girder bridge – bow string girder bridge 4.0 Steel Bridge 4.1 Plate girder bridge 4.2 box girder bridge – composite beam bridge 4.3 truss bridge – influence lines for forces in members 2 4.4 suspension bridge 4.5 cable stayed bridge 4.6 analysis for static, 4.7 moving and dynamic loading 5.0 Construction And Maintenance 5.1 Construction methods 5.2 short span – long span 5.3 false work for concrete bridges 5.4 construction management 5.5 inspection and maintenance 1 specific pridge in the problem of the p	2.8		1					
3.1 Reinforced concrete and prestressed concrete bridge: 3.2 Straight and curved bridge decks - decks of various types 3.3 slab hollow and voided slab - beam - slab box 3.4 Reinforced concrete slab bridge - load distribution - Pigeaud's theory - skew slab deck 3.5 RC tee beam and slab bridge - continuous beam bridge - fixed point method 3.6 influence lines -balanced Cantilever bridge - rigid frame bridge - 3.7 box girder bridge - bow string girder bridge 3.8 Pre-stressed concrete bridge - analysis and design for static, moving and dynamic loading 4.0 Steel Bridge 4.1 Plate girder bridge - composite beam bridge - 4.2 box girder bridge - composite beam bridge - 4.3 truss bridge - influence lines for forces in members - 4.4 suspension bridge - 4.5 cable stayed bridge - 4.6 analysis for static, - 4.7 moving and dynamic loading - 5.0 Construction And Maintenance 5.1 Construction methods - 5.2 short span - long span - 5.3 false work for concrete bridges - 5.5 inspection and maintenance - 5.6 lesson from bridge - 5.7 rehabilitation of a bridge failures		Analysis of Superstructure						
3.2 Straight and curved bridge decks - decks of various types 3.3 slab hollow and voided slab - beam - slab box 3.4 Reinforced concrete slab bridge - load distribution - Pigeaud's theory - skew slab deck 3.5 RC tee beam and slab bridge - continuous beam bridge - fixed point method 3.6 influence lines -balanced Cantilever bridge - rigid frame bridge - 1 3.7 box girder bridge - bow string girder bridge 3.8 Pre-stressed concrete bridge - analysis and design for static, moving and dynamic loading 4.0 Steel Bridge 4.1 Plate girder bridge - composite beam bridge 1 4.2 box girder bridge - composite beam bridge 1 4.3 truss bridge - influence lines for forces in members 2 4.4 suspension bridge 1 4.5 cable stayed bridge 1 4.6 analysis for static, 1 4.7 moving and dynamic loading 1 5.0 Construction And Maintenance 5.1 Construction methods 1 5.2 short span - long span 1 5.3 false work for concrete bridges 1 5.4 construction management 2 5.5 inspection and maintenance 1 5.6 lesson from bridge 1 5.7 rehabilitation of a bridge failures 1			1					
3.3 slab hollow and voided slab – beam – slab box Reinforced concrete slab bridge – load distribution – Pigeaud's theory – skew slab deck RC tee beam and slab bridge – continuous beam bridge – fixed point method 3.6 influence lines –balanced Cantilever bridge – rigid frame bridge – 1 3.7 box girder bridge – bow string girder bridge Pre-stressed concrete bridge – analysis and design for static, moving and dynamic loading Steel Bridge 4.1 Plate girder bridge – composite beam bridge — 1 4.2 box girder bridge – composite beam bridge — 1 4.3 truss bridge – influence lines for forces in members — 2 4.4 suspension bridge — 1 4.5 cable stayed bridge — 1 4.6 analysis for static, — 1 4.7 moving and dynamic loading — 1 5.0 Construction And Maintenance 5.1 Construction methods — 1 5.2 short span – long span — 1 5.3 false work for concrete bridges — 1 5.4 construction management — 2 5.5 inspection and maintenance — 1 5.6 lesson from bridge — 1 1 rehabilitation of a bridge failures — 1			1					
Reinforced concrete slab bridge – load distribution – Pigeaud's theory – skew slab deck RC tee beam and slab bridge – continuous beam bridge – fixed point method 3.6 influence lines –balanced Cantilever bridge – rigid frame bridge – 1 3.7 box girder bridge – bow string girder bridge — 1 3.8 Pre-stressed concrete bridge – analysis and design for static, moving and dynamic loading 4.0 Steel Bridge 4.1 Plate girder bridge — composite beam bridge — 1 4.2 box girder bridge — composite beam bridge — 1 4.3 truss bridge – influence lines for forces in members — 2 4.4 suspension bridge — 1 4.5 cable stayed bridge — 1 4.6 analysis for static, — 1 4.7 moving and dynamic loading — 1 5.0 Construction And Maintenance 5.1 Construction methods — 1 5.2 short span – long span — 1 5.3 false work for concrete bridges — 1 5.4 construction management — 2 5.5 inspection and maintenance — 1 5.6 lesson from bridge — 1 1 rehabilitation of a bridge failures — 1			1					
RC tee beam and slab bridge – continuous beam bridge – fixed point method 3.6 influence lines –balanced Cantilever bridge – rigid frame bridge – 1 3.7 box girder bridge – bow string girder bridge 1 3.8 Pre-stressed concrete bridge – analysis and design for static, moving and dynamic loading 4.0 Steel Bridge 4.1 Plate girder bridge – composite beam bridge 1 4.2 box girder bridge – composite beam bridge 1 4.3 truss bridge – influence lines for forces in members 2 4.4 suspension bridge 1 4.5 cable stayed bridge 1 4.6 analysis for static, 1 4.7 moving and dynamic loading 1 5.0 Construction And Maintenance 5.1 Construction methods 1 5.2 short span – long span 1 5.3 false work for concrete bridges 1 5.4 construction management 2 5.5 inspection and maintenance 1 5.6 lesson from bridge 1 5.7 rehabilitation of a bridge failures 1		Reinforced concrete slab bridge – load distribution – Pigeaud's theory –	1					
3.6 influence lines -balanced Cantilever bridge - rigid frame bridge - 1 3.7 box girder bridge - bow string girder bridge 1 3.8 Pre-stressed concrete bridge - analysis and design for static, moving and dynamic loading 2 4.0 Steel Bridge 2 4.1 Plate girder bridge 2 4.2 box girder bridge - composite beam bridge 1 4.3 truss bridge - influence lines for forces in members 2 4.4 suspension bridge 1 4.5 cable stayed bridge 1 4.6 analysis for static, 1 4.7 moving and dynamic loading 1 5.0 Construction And Maintenance 5 5.1 Construction methods 1 5.2 short span - long span 1 5.3 false work for concrete bridges 1 5.4 construction management 2 5.5 inspection and maintenance 1 5.6 lesson from bridge 1 5.7 rehabilitation of a bridge failures 1	3.5	RC tee beam and slab bridge – continuous beam bridge – fixed point	1					
3.7 box girder bridge – bow string girder bridge 3.8 Pre-stressed concrete bridge – analysis and design for static, moving and dynamic loading 4.0 Steel Bridge 4.1 Plate girder bridge — 2 4.2 box girder bridge — composite beam bridge — 1 4.3 truss bridge – influence lines for forces in members — 2 4.4 suspension bridge — 1 4.5 cable stayed bridge — 1 4.6 analysis for static, — 1 4.7 moving and dynamic loading — 1 5.0 Construction And Maintenance 5.1 Construction methods — 1 5.2 short span – long span — 1 5.3 false work for concrete bridges — 1 5.4 construction management — 2 5.5 inspection and maintenance — 1 5.6 lesson from bridge — 1 5.7 rehabilitation of a bridge failures — 1	3.6		1					
Pre-stressed concrete bridge – analysis and design for static, moving and dynamic loading 2								
and dynamic loading 4.0 Steel Bridge 4.1 Plate girder bridge 2 4.2 box girder bridge – composite beam bridge 1 4.3 truss bridge – influence lines for forces in members 2 4.4 suspension bridge 1 4.5 cable stayed bridge 1 4.6 analysis for static, 1 4.7 moving and dynamic loading 1 5.0 Construction And Maintenance 5.1 Construction methods 1 5.2 short span – long span 1 5.3 false work for concrete bridges 1 5.4 construction management 2 5.5 inspection and maintenance 1 5.6 lesson from bridge 1 5.7 rehabilitation of a bridge failures 1			2					
4.0 Steel Bridge 4.1 Plate girder bridge 2 4.2 box girder bridge – composite beam bridge 1 4.3 truss bridge – influence lines for forces in members 2 4.4 suspension bridge 1 4.5 cable stayed bridge 1 4.6 analysis for static, 1 4.7 moving and dynamic loading 1 5.0 Construction And Maintenance 5.1 Construction methods 1 5.2 short span – long span 1 5.3 false work for concrete bridges 1 5.4 construction management 2 5.5 inspection and maintenance 1 5.6 lesson from bridge 1 5.7 rehabilitation of a bridge failures 1	3.8		_					
4.1Plate girder bridge24.2box girder bridge – composite beam bridge14.3truss bridge – influence lines for forces in members24.4suspension bridge14.5cable stayed bridge14.6analysis for static,14.7moving and dynamic loading15.0Construction And Maintenance5.1Construction methods15.2short span – long span15.3false work for concrete bridges15.4construction management25.5inspection and maintenance15.6lesson from bridge15.7rehabilitation of a bridge failures1	4.0							
4.2box girder bridge – composite beam bridge14.3truss bridge – influence lines for forces in members24.4suspension bridge14.5cable stayed bridge14.6analysis for static,14.7moving and dynamic loading1Construction And Maintenance5.1Construction methods15.2short span – long span15.3false work for concrete bridges15.4construction management25.5inspection and maintenance15.6lesson from bridge15.7rehabilitation of a bridge failures1			2					
4.3 truss bridge – influence lines for forces in members 2 4.4 suspension bridge 1 4.5 cable stayed bridge 1 4.6 analysis for static, 1 4.7 moving and dynamic loading 1 5.0 Construction And Maintenance 5.1 Construction methods 1 5.2 short span – long span 1 5.3 false work for concrete bridges 1 5.4 construction management 2 5.5 inspection and maintenance 1 5.6 lesson from bridge 1 5.7 rehabilitation of a bridge failures 1			1					
4.4 suspension bridge 1 4.5 cable stayed bridge 1 4.6 analysis for static, 1 4.7 moving and dynamic loading 1 5.0 Construction And Maintenance 5.1 Construction methods 1 5.2 short span – long span 1 5.3 false work for concrete bridges 1 5.4 construction management 2 5.5 inspection and maintenance 1 5.6 lesson from bridge 1 5.7 rehabilitation of a bridge failures 1			2					
4.5 cable stayed bridge 1 4.6 analysis for static, 1 4.7 moving and dynamic loading 1 5.0 Construction And Maintenance 5.1 Construction methods 1 5.2 short span – long span 1 5.3 false work for concrete bridges 1 5.4 construction management 2 5.5 inspection and maintenance 1 5.6 lesson from bridge 1 5.7 rehabilitation of a bridge failures 1			1					
4.6 analysis for static, 1 4.7 moving and dynamic loading 1 5.0 Construction And Maintenance 5.1 Construction methods 1 5.2 short span – long span 1 5.3 false work for concrete bridges 1 5.4 construction management 2 5.5 inspection and maintenance 1 5.6 lesson from bridge 1 5.7 rehabilitation of a bridge failures 1			1					
4.7 moving and dynamic loading 1 5.0 Construction And Maintenance 5.1 Construction methods 1 5.2 short span – long span 1 5.3 false work for concrete bridges 1 5.4 construction management 2 5.5 inspection and maintenance 1 5.6 lesson from bridge 1 5.7 rehabilitation of a bridge failures 1			1					
5.0 Construction And Maintenance 5.1 Construction methods 1 5.2 short span – long span 1 5.3 false work for concrete bridges 1 5.4 construction management 2 5.5 inspection and maintenance 1 5.6 lesson from bridge 1 5.7 rehabilitation of a bridge failures 1			1					
5.1 Construction methods 1 5.2 short span – long span 1 5.3 false work for concrete bridges 1 5.4 construction management 2 5.5 inspection and maintenance 1 5.6 lesson from bridge 1 5.7 rehabilitation of a bridge failures 1								
5.2short span – long span15.3false work for concrete bridges15.4construction management25.5inspection and maintenance15.6lesson from bridge15.7rehabilitation of a bridge failures1			1					
5.3false work for concrete bridges15.4construction management25.5inspection and maintenance15.6lesson from bridge15.7rehabilitation of a bridge failures1			1					
5.4construction management25.5inspection and maintenance15.6lesson from bridge15.7rehabilitation of a bridge failures1			1					
5.5inspection and maintenance15.6lesson from bridge15.7rehabilitation of a bridge failures1			2					
5.6 lesson from bridge 1 5.7 rehabilitation of a bridge failures 1			1					
5.7 rehabilitation of a bridge failures 1			1					
			1					
			1					

Course Designer

1. Dr.D.Sivakumar - sivakumard@ksrct.ac.in

70 PSE E25	Non Linear Analysis of Structures	Category	L	Т	Р	Credit
		PE	3	0	0	3

- Analyse the bar system considering the material and geometric nonlinearity.
- Perform inelastic analysis of flexural members.
- Perform vibration analysis of flexural members.
- Perform elastic and inelastic analysis of Plates.
- Perform nonlinear and instability analysis of elastically supported beams.

Pre-requisites

Basic knowledge of Soil Mechanics, Geology & Mathematical

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Describe the concept of Non-Linear Analysis of the structures	Apply
CO2	Analyse the members subjected to deformations and analysis of bars	Analyse
002	with and without restraints	
CO3	Apply the knowledge of vibration theory on flexural members and identify	Understand
003	its behaviour under cyclic loading	
CO4	Identify the Non-linear behaviour of plates.	Analyse
CO5	Solve the elemental equation of beams Non linear vibrations	Apply

Cos	Pos									
	1	2	3	4	5	6				
CO1	3	3	2	3	2	3				
CO2	3	2	3	2	3	2				
CO3	3	3	2	3	2	3				
CO4	2	2	2	2	2	2				
CO5	3	3	2	3	2	3				
3 - Strong; 2 - Medium; 1 – Some										

Assessment Pattern								
Bloom's		sessment Tests arks)	End Sem Examination (Mark					
Category	1	2						
Remember	10	10	20					
Understand	10	10	20					
Apply	20	20	30					
Analyse	20	20	30					
Evaluate	-	-	-					
Create	-	-	-					
Total	60	60	100					

Sylla	bus								
K.S.Rangasamy College of Technology – Autonomous R2022									
	M.E - Structural Engineering								
			70 PSE	E25-Non Li	inear Analy	sis of Stru	ctures		
Seme	octor	ŀ	lours/Weel	<	Total	Credit	Ма	ximum Mai	rks
Seme	ester	L	T	Р	Hours	C	CA	ES	Total
II	•	3	0	0	45	3	40	60	100
static thickr	ally de ness.	eterminate	linear Ana and statical	ly indeterm	inate bar s	systems of	uniform an	d variable	[9]
thickr	ness m	embers su	Flexural bjected to snembers with	mall deforn	nations; ine	lastic analy			[9]
flexur meml	al me	mbers; hys		dels and a	analysis of	uniform a	nd variable	e stiffness	[9]
		I Inelastic kness plate	Analysis o es	f Plates: E	Elastic and i	nelastic an	alysis of ur	niform and	[9]
	i near \ orted b		and Instabi	lity : Nonli	near vibrati	on and Inst	tabilities of	elastically	[9]
							To	tal Hours	45
Text	Book(
1.			Vong ,"Theonering", W				s: The Forc	e Analogy N	Method for
2. Fertis, D.G, Non-linear Mechanics, CRC Press, 1999.									
Reference(s):									
1. Sathyamoorthy.M, Nonlinear Analysis of Structures, CRC Press, 2010.									
2. Reddy.J.N, Non-linear Finite Element Analysis, Oxford University Press, 2008.									
F.C. Filippou and G.L. Fenves, "Methods of Analysis for Earthquake-Resistant Structures" 3. from "Earthquake Engineering, From Engineering Seismology to Performance-Based Engineering", CRC Press, 2004.									
4.	McGu		n; Gallaghei		l.; and Zien	nian, Ronal	d D., "Matri	x Structural	Analysis,

Course Contents and Lecture Schedule No. of S. No. **Topics** hours 1.0 **Introduction to Nonlinear Analysis** 1.1 Material nonlinearity 1.2 Geometric nonlnearity 1 Statically determinate bar systems of uniform thickness 1.3 1 2 1.4 Statically indeterminate bar systems of uniform thickness 1.5 Statically determinate bar systems of variable thickness 2 1.6 Statically indeterminate bar systems of variable thickness 2 2.0 **Inelastic Analysis of Flexural Members** Inelastic analysis of uniform thickness members subjected to small 1 2.1 deformations Inelastic analysis of variable thickness members subjected to small 2.2 deformations 2.3 Inelastic analysis of bars of uniform stiffness members with axial restraints 1 2 2.4 Inelastic analysis of bars of variable stiffness members with axial restraints 2.5 Inelastic analysis of bars of uniform stiffness members without axial restraints 2 Inelastic analysis of bars of variable stiffness members without axial restraints 2 2.6 Vibration Theory and Analysis of Flexural Members 3.0 3.1 Vibration theory – Basic introductions 1 3.2 **Analysis of Flexural Members** 1 3.3 Hysteretic Models 1 Analysis of uniform stiffness members under cyclic loading 2 3.4 3.5 Analysis of variable stiffness members under cyclic loading 2 Problems related to cyclic loading 2 3.6 4.0 **Elastic and Inelastic Analysis of Plates** 4.1 Elastic analysis of uniform plates 4.2 In Elastic analysis of uniform plates 2 4.3 Elastic analysis of variable thickness plates 2 4.4 In Elastic analysis of variable thickness plates 2 Simple Problems 4.5 1 5.0 **Nonlinear Vibration and Instability** 5.1 Nonlinear vibration 3 5.2 Instabilities of elastically supported beams 3 5.3 Problems related to nonlinear vibrations 3

Course Designer

Dr.J.Abdul Bari- abdulbari@ksrct.ac.in

70 PSE E26	Life Cycle Assessment of	Category	L	Т	Р	Credit
	Structures	PE	3	0	0	0

- To understand probability concepts in structural reliability
- To learn reliability measures and performance functions
- To explore FOSM and Monte Carlo simulation methods
- To analyze system reliability in different configurations
- To apply statistical methods for reliability assessment

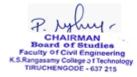
Pre-requisites

Basic knowledge of Structural Analysis

Course Outcomes

On the successful completion of the course, students will be able to

CO1	An ability to design a building or a group of buildings with all the due considerations of sustainable planning and design principles	Remember
CO2	Ability to use energy simulation tools and its result analysis	Understand
CO3	To balance human needs with environmental concerns in architectural design	Apply
CO4	Ability to critically analyses buildings with respect to Bio-climatic and GRIHA/LEED related	Analyse
CO5	Evaluate economic and environmental impacts using LCC	Analyse


COs	POs								
	1	2	3	4	5	6			
CO1	3	2	3	-	-	-			
CO2	3	2	2	-	-	-			
CO3	3	2	2	-	-	-			
CO4	3	2	2	-	-	-			
CO5	3	2	2	-	-	-			

Assessment Pattern							
Places's Catagony	Continuous Assess	sment Tests (Marks)	End Semester				
Bloom's Category	1	2	Examination (Marks)				
Remember	30	10	30				
Understand	30	10	20				
Apply		20	30				
Analyse		20	20				
Evaluate	-	-	-				
Create	-	-	-				
Total	60	60	100				

Syllabus	S							
K.S.Rangasamy College of Technology – Autonomous R2022								
				il Enginee				
				le Assessr				
Semes	ster	lours/Weel	(Total	Credit	Ма	ximum Mar	ks
	L	Т	Р	Hours	С	CA	ES	Total
II	3	0	0	45	3	40	60	100
History ounit, Sys	ction and Termin of LCA, Aspects of tem boundary, Lif le Energy Analysis	of LCA, var fe Cycle Inv	entory (LCI	l) data base				[9]
Material design, categorie categorie	cle Assessment i level, Product Le Schematic Designer: Inventory A es like Global Wa I (EP), Smog Forn	evel, buildingn and De nalysis, In rming Potel	g level, Indesign Deve npact asso ntial (GWP)	elopment S essment, i), Acidificati	tage.LCA nterpretatio on Potentia	process a n, Differe I (AP), Eutr	nd impact nt impact ophication	[9]
Probabil Chebysh	t Tools For LCA* ity mass functi nev's theorem. Pr ons, Continuous o	on, proba obability di	stributions:	Discrete di	stributions-	Binomial a	rpectation, and poison	[9]
Figure o	i ty Analysis* f Merit (FOM), Pa ents-three phase l							[9]
components-three phase building breaking down a materials, Criteria for material selection Life Cycle Costing (LCC) Tool * Component characteristics of an element group, Input for energy Calculation, LCC calculations conduct of LCI and LCC calculations, Slective Assessment, Normalization and Weighing Factors LCA and LCC for different materials. Case studies- Two and Three variants of a house, office building, retrofitting buildings							zation and	[9]
						Total	Hours:45	45
Text Bo	ok(s):							
1.	A. Kapur and T.E	. Graedel:	Industrial E	cology. End	yclopedia c	of Energy, V	olume 3, 20	04.
2.	Environmental lif	e cycle ana	lysis by Da	vid Ciambro	ne, CRC-P	ress 1997.		
Referen	Reference(s):							
1.	1. Life-cycle analysis of energy systems from methodology to applications, by Bent Sorense Published by Royal Society of Chemistry, June 2011.						Sorensen,	
2.	Lifecycle Assess	ment: Princ	iples and P	ractice Cha	pter 1.			
3.	R A Fresch and N E Gallonoulos: Strategies for Manufacturing, Scientific American 261 (3)							n 261 (3),
4.	Hauschild, M.Z., Practice, Springe		ım, R.K., a	and Olsen,	S.I., Life	Cycle Asse	essment: Th	eory and

^{*} SDG 9: Industry, innovation and infrastructure

Course Contents and Lecture Schedule							
S. No.	Topics	No. of hours					
1.0	Introduction and Terminology						
1.1	Fundamentals of Life Cycle Assessment (LCA)	1					
1.2	History and evolution of LCA methodologies	1					
1.3	Life Cycle Stages: Raw materials to end-of-life	1					
1.4	Functional unit and system boundary definition	1					
1.5	Life Cycle Inventory (LCI) and data collection methods	1					
1.6	Life Cycle Management (LCM) and its applications	1					
1.7	Environmental impact categories and their significance	1					
1.8	Role of LCA in sustainability and green buildings	1					
1.9	Case studies on LCA applications in construction	1					
2.0	Life Cycle Assessment in Building Industry						
2.1	Material, product, building, and industry-level LCA	1					
2.2	Integration of LCA in building design and construction	1					
2.3	LCA in different design stages (Pre-design, schematic, and development)	1					
2.4	LCA and environmental impact categories (e.g., GWP, AP, EP)	1					
2.5	Role of energy efficiency and carbon footprint in LCA	1					
2.6	Case studies on LCA-based sustainable design decisions	1					
2.7	Regulatory frameworks and certifications (LEED, GRIHA, BREEAM)	1					
2.8	Challenges and limitations of LCA in construction	1					
2.9	Comparative LCA for different construction materials	1					
3.0	Different Tools For LCA						
3.1	Introduction to LCA software and databases	1					
3.2	Probability mass function and probability density function	1					
3.3	Mathematical expectation and Chebyshev's theorem in LCA	1					
3.4	Probability distributions in LCA (Binomial, Poisson, Normal)	1					
3.5	Statistical methods for uncertainty analysis in LCA	1					
3.6	Sensitivity analysis for impact assessment	1					
3.7	Normalization and weighting in impact assessment	1					
3.8	Comparative analysis of LCA tools (SimaPro, OpenLCA, GaBi)	1					
3.9	Hands-on demonstration of an LCA tool	1					
4.0	Reliability Analysis						
4.1	Concept of reliability in structural assessment	1					
4.2	Failure modes, limit states, and risk assessment	1					
4.3	Reliability index and factor of safety in LCA	1					
4.4	First Order Second Moment (FOSM) method application	1					
4.5	Advanced First Order Second Moment (AFOSM) method	1					
4.6	Monte Carlo simulation for structural reliability	1					
4.7	Load and resistance factor design (LRFD) concepts	1					
4.8	Reliability-based design and decision-making	1					
4.9	Application of reliability analysis in green buildings	1					
5.0	Life Cycle Costing (LCC) Tool						
5.1	Fundamentals of Life Cycle Costing (LCC)	1					
5.2	Relationship between LCA and LCC in decision-making	1					
5.3	Key components and calculations in LCC	1					
5.4	Conducting an LCA and LCC for structural materials	1					
5.5	Integration of LCA and LCC for sustainable construction	1					
5.6	Energy efficiency assessment through LCA and LCC	2					
5.7	Case studies on LCA and LCC applications in buildings	2					

Course Designer(s)

1. Dr.K.VijayaSundravel - <u>vijayasundravel@ksrct.ac.in</u>

70 PSE E31	Soil Structure Interaction	Category	L	Т	Р	Credit
		PE	3	0	0	3

- To know Soil foundation interaction problems, behaviors and models.
- To understand the elastic foundation soil models and plate on elastic medium
- To design plate types, numerical analysis of finite plates,
- To develop elastic analysis of single pile and group of piles based on settlement.
- Interaction analysis of piles and about the analysis of laterally loaded piles.

Pre-requisites

Basic knowledge of Soil Mechanics, Foundation Design & Geology.

Course Outcomes								
On the su	On the successful completion of the course, students will be able to							
CO1	Generate concepts of soil structure Interaction	Apply						
CO2	Assess the soil models as isotropic elastic half-space	Analyse						
CO3	Formulate winkler foundation model for elastic continum	Understand						
CO4	Calculate elastic medium for rectangular and circular plates	Analyse						
CO5	Estimate the load distribution in pile.	Apply						

Cos	Pos							
CUS	1	2	3	4	5	6		
CO1	3	3	2	3	2	3		
CO2	3	3	3	2	2	2		
CO3	3	3	2	3	2	2		
CO4	3	3	2	2	2	2		
CO5	3	3	2	3	3	3		
3 - Stron	3 - Strong; 2 - Medium; 1 – Some							

Assessment Patte	ern		
Bloom's		sessment Tests arks)	End Sem Examination (Marks)
Category	1	2]
Remember	10	10	20
Understand	10	10	20
Apply	20	20	30
Analyse	20	20	30
Evaluate	-	-	-
Create	-	-	-
Total	60	60	100

Syllabi	us								
	K.S.Rangasamy College of Technology – Autonomous R2022								
	M.E - Structural Engineering								
70 PSE E31-Soil Structure Interaction									
Seme	stor	Hours/Week		Total	Credit	M	aximum Mark	S	
Seille	L	T	Р	Hours	С	CA	ES	Total	
II	3	0	0	45	3	40	60	100	
Soil-Foundation Interaction Introduction to soil-foundation interaction problems – Soil behaviour, Foundation behaviour, Interface behaviour, Scope of soil foundation interaction analysis, Soil response models, Elastic continuum, two parameter elastic models, Elastic plastic behaviour, Time dependent behaviour.								[9]	
Infinite	beam, two	undation- Soil Mo parameters, Isotro beams in relation	opic elastic		Analysis of	beams of fi	nite length,	[9]	
Infinite		dium r, Two parameters ılar and circular pla						[9]	
Elastic		Pile ngle pile, Theoreti n analysis, Load di			nt and load	distributions,	Analysis of	[9]	
Load		l e diction for lateral Pile raft system, So				n and elast	ic analysis,	[9]	
							Total Hours	45	
Text B									
		P.S., "Elastic Anal							
		and Davis, E.H., "I	Pile Foundati	on Analysis a	and Design",	John Wiley, 2	2001		
	Reference(s):								
	1. Scott, R.F., "Foundation Analysis", Prentice Hall, 2011								
	2. Structure-Soil Interaction – State of Art Report", Institution of Structural Engineers, 2018							0	
3.	Institute, Deini, 2011								
	Prakash, S., a 1990.	and Sharma, H. D.	, "Pile Found	lations in Eng	gineering Pra	ctice."John V	Viley & Sons,	New York,	

Course Contents and Lecture Schedule No. of S. No. **Topics** hours 1.0 **Soil-Foundation Interaction** 1.1 Introduction to soil 1.2 foundation interaction problems 1 1.3 Soil behaviour, Foundation behaviour 1 Interface behaviour 2 1.4 1.5 Scope of soil foundation interaction analysis 1 Soil response models 1.6 1 1.7 Elastic continuum, two parameter elastic models 1 1.8 Elastic plastic behaviour 1 1.9 Time dependent behaviour 1 2.0 **Beam on Elastic Foundation- Soil Models** Infinite beam. 2.1 1 2.2 2 two parameters, 2.3 Isotropic elastic half-space, 2 2.4 Analysis of beams of finite length, 1 2.5 Classification of finite beams 2 2.6 Classification of finite beams in relation to their stiffness 1 3.0 Plate on Elastic Medium 3.1 Infinite plate, Winkler 1 3.2 Two parameters 1 3.3 Isotropic elastic medium, 1 Thin and thick plates,

Course Designer

3.4

3.5

3.6

3.7

3.8

4.0

4.1

4.2

4.3

4.4

4.5

4.6

5.0

5.1

5.2

5.3

5.4

5.5

5.6

1. Dr.D.Sivakumar - sivakumard@ksrct.ac.in

Solutions through influence charts

Analysis of finite plates,

Elastic Analysis of Pile

Analysis of pile group

Load distribution in pile.

Laterally Loaded Pile

Sub grade reaction and

elastic analysis,

Pile raft system, ,

Interaction analysis,

Interaction analysis.

Simple solutions

rectangular and circular plates,

Elastic analysis of single pile,

Theoretical solutions for settlement

Numerical analysis of finite plates, Simple solutions

Load deflection prediction for laterally loaded piles,

Theoretical solutions for settlement and load distributions,

1

1

1

1

2

2

2

2

1

1

1

2

2

1

2

1

70 PSE E32	Design of Shell and Spatial Structures	Category	L	Т	Р	Credit
		PE	3	0	0	3

- Classification of shells, membrane theory of shells, and design of folded plate structures
- Design philosophy of space frame, optimization techniques and structural theorems
- Study the behaviour and design of shells, folded plates, space frames and application of FORMIAN software.
- To expose the students the principles of design of folded plates.
- Students will be introduced to general principles of design Philosophy and behaviour.

Pre-requisites

Fundamentals of Mathematics, knowledge of strength of materials and its mechanics and theory of elasticity and plasticity.

Course Outcomes							
On the successful completion of the course, students will be able to							
CO1	Analyse various types of shells and using membrane theory.	Apply					
CO2	Analyse various shapes of plates using various methods.	Analyse					
CO3	Principles and design philosophy of space frames.	Understand					
CO4	Analyse and design space frames.	Analyse					
CO5	Analyse various optimization structural members.	Apply					

Coo		Pos								
Cos	1	2	3	4	5	6				
CO1	3	3	1	3	1	1				
CO2	3	3	1	3	1	1				
CO3	3	3	1	3	1	1				
CO4	3	3	1	3	1	1				
CO5	3	3	1	3	1	1				
3 - Stron	3 - Strong; 2 - Medium; 1 – Some									

Assessment Pattern									
Bloom's		ssessment Tests arks)	End Sem Examination (Marks)						
Category	1	2							
Remember	10	10	20						
Understand	10	10	20						
Apply	20	20	30						
Analyse	20	20	30						
Evaluate	-	-	-						
Create	-	-	-						
Total	60	60	100						

Syllabu	s								
K.S.Rangasamy College of Technology – Autonomous R2022									
M.E - Structural Engineering									
70 PSE E32- Design of Shell and Spatial Structures									
Semest	er	lours/Wee		Total	Credit	Ma			
	L	T	Р	Hours	С	CA	ES	Total	
<u> </u>	3	0	0	45	3	40	60	100	
Classific of revolu	rane Theory or cation of shells ution and shells	 Types of of translati 						[9]	
Folded Commit	n of Folded Plate Structures tee method.	s – structui		ur – Types	– Design I	oy ACI – A	SCE Task	[9]	
	Frame - Desig rames – config riour			es – genera	l principles	of design F	Philosophy	[9]	
Analysis	sis of Space Foots of space frame		x Algebra, I	Formian – D	etailed des	ign of Spac	e frames	[9]	
Optimiza	i zation ation by struct and frames - m.							[9]	
						To	tal Hours	45	
Text Bo									
	moshenko, S. ew York,2003	and Kriege	r S.W. "The	ory of Plate	es and She	lls", McGra	w Hill book	company,	
	eddy J.N " The ew York, 2006.		nalysis of e	lastic plate	s and shell	s", McGrav	/ Hill Book	company,	
Referen									
1. D	amasamy, G.S elhi, 1999.					, 		, 	
 E 	2. Belegundu, A.D., "Optimization Concepts and Applications in Engineering ", Pearson Education, 2002.								
٠,	Bangash MVH, Bangash, T. "Flaments of Spatial Structures: Analysis and Design." Thomas								
4 K	KokKeong Choong "Recent Advances in Analysis Design and Construction of Shell & Spatial								

Course Contents and Lecture Schedule No. of S. No. **Topics** hours 1.0 **Membrane Theory of Shells** 1.1 Shell surfaces Classification of shell surfaces 1.2 1 1.3 Surfaces of revolution 1 1.4 Δ -forms of surfaces 2 1.5 Folded plates 2 1.6 Characteristics of shell surfaces. 2 2.0 **Design of Folded Plates** Surfaces and its related aspects 2.1 1 2.2 Curvatures of a surface 1 2.3 Curves and related aspects 1 2.4 Structural behaviour of shell 1 2.5 1 Stress-strain relationships 2.6 Equilibrium equations 1 Equilibrium equations for thin shell elements in membrane state 2.7 1 2.8 Curvilinear coordinate system 1 2.9 Shells of revolution 1 Space Frame - Design Philosophy 3.0 Analysis of shells 2 3.1 3.2 Membrane analysis 2 3.3 Axisymmetric loading 1 Concentrated load - Self weight 3.4 1 Uniform loading - Pressure loading 3.5 1 Hydrostatic loading 1 3.6 3.7 Non-axisymmetric loading - Wind load 1 4.0 **Analysis of Space Frames** 4.1 Spherical domes under concentrated load and under self-weight 2 4.2 1 Bending analysis Axisymmetric case – Equilibrium equations for thin shells of revolution in 1 4.3 bendina 4.4 Equilibrium equations in orthogonal curvilinear coordinate system 1 4.5 Bending equation of spherical lattice domes 1 Cylindrical shells – Equilibrium equations – DKJ theory 4.6 1 4.7 Cylindrical shells – Equilibrium equations – Jenkin's theory 1 5.0 Optimization 2 5.1 Beam method of analysis Merits and demerits – Case studies for simply supported cylindrical shells – 5.2 without and with edge beams Design of shells based on membrane theory - Shells having semicircular 1 5.3 directrix Design of shells based on membrane theory - Shells with circular directrix 5.4 1 5.5 Design of shells based on beam theory 1 Design aspects of paraboloid, hyperboloid and hyperbolic paraboloid shells 5.6 1 5.7 Analysis and structural behaviour of folded plates and its various types 1 5.8 Design of folded plates by ACI-ASCE Task Committee method 1 **Course Designer**

Dr.K.Vijaya Sundravel - vijayasundravel@ksrct.ac.in

70 PSE E33	Off Shore Structures	Category	L	Т	Р	Credit
		PE	3	0	0	3

- To understand the demand for coastal and offshore structures, overview of different types of ocean structures.
- To get exposed to structural geometry, analysis methods, design techniques, construction practice, different types of material, guidelines associated with selection of materials for marine environment.
- To learn various types of structural systems/forms, brief overview of various environmental loads.
- To be familiar with the problems associated with the material behavior in marine environment and various protection methods.
- To understand the inspection and testing methods, repair and rehabilitation processes.

Pre-requisites

Fundamentals of Mathematics, knowledge of Mechanics of Materials, Statics, Concrete Technology and Concrete Design

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Understand the functions and behaviour of offshore structures	Apply
CO2	Identify the different types of loads acting on the structures	Analyse
CO3	Understand the behaviour of waves and its effects on structures	Understand
CO4	Evaluate the behaviour of structures for its dynamic loads	Analyse
CO5	Design of offshore structures with failure probability	Apply

Coo			Po	s								
Cos	1	2	3	4	5	6						
CO1	2	2	3	-	2	2						
CO2	2	2	3	-	2	2						
CO3	1	2	1	3	2	-						
CO4	2	2	3	3	2	2						
CO5	2	2	3	2	3	-						
3 - Stron	3 - Strong; 2 - Medium; 1 – Some											

Assessment Patte	Assessment Pattern									
Bloom's		ssessment Tests arks)	End Sem Examination (Marks)							
Category	1	2								
Remember	10	10	20							
Understand	10	10	20							
Apply	20	20	30							
Analyse	20	20	30							
Evaluate	-	-	-							
Create	-	-	-							
Total	60	60	100							

Syllabus	•								
	K.S.Rangasamy College of Technology – Autonomous R2022								
	M.E - Structural Engineering								
	70 PSE E33-Off Shore Structures								
Semeste	F	lours/Wee	K	Total	Credit	Ма	ximum Ma	rks	
Semeste	L	Τ	Р	Hours	Hours C CA ES				
II	3	0	0	45	3	40	60	100	
Wave Th	eories							[9]	
	neration proce		inite amplitu	ıde and nor	ılinear wave	theories.		[9]	
	of Offshore St ces, wave for		all bodies a	and large bo	odies - curr	ent forces	- Morison	[9]	
	e Soil and Strutypes of offshol.		•	ion modelin	g, fixed jack	ket platform	structural	[9]	
Analysis	of Offshore	Structures						[O]	
	ethod of analys		on analysis	and dynam	nics of offsh	ore structur	es.	[9]	
_	of Offshore St of platforms, he		cket tower,	analysis an	d design of	mooring c	ables and	[9]	
F-F	<u>- </u>					To	tal Hours	45	
Text Boo	ok(s):								
1. Re	ddy. D. V and	Swamidas	A. S. J., Es	sential of O	ffshore Stru	ctures, CR	C Press, 20	13.	
٠,	akrabarti. S.l blications, 198		dynamics o	of Offshore	e Structure	es", Comp	utational r	nechanics	
Referen	ce(s):								
AF	I RP 2A-WSD	, Planning,	Designing a	and Constru	cting Fixed	Offshore P	latforms – V	Vorking	
	ess								
	sign – API Pu								
	Poddy D. V. and Arackiacamy M. Offsharo Structures, Vol. 1 and Vol. 2, Krioger Publishing								
4. Tu	rgut Sarpkaya	, Wave For	ces on Offs	hore Structi	ıres, Cambı	idge Unive	rsity Press,	2010.	

Course Contents and Lecture Schedule No. of S. No. **Topics** hours 1.0 **Wave Theories** 1.1 Types of offshore structures and conceptual development 1.2 Analytical models for jacket structures 1 1.3 Materials and their behaviour under static and dynamic loads 1 1.4 Statutory regulations 2 1.5 2 Allowable stresses Various design methods and Code Provisions 1.6 2 2.0 FORCES OF OFFSHORE STRUCTURES Design specification of API, DNV, Lloyd's and other classification societies 2.1 1 Construction of jacket and gravity platforms 2894 Module II Loads on offshore 1 2.2 structures 2.3 Environmental loads due to wind, wave, current and buoyancy 1 2.4 1 Morison's Equation 2.5 Maximum wave force on offshore structure 1 2.6 Concept of Return waves 1 2.7 Principles of Static and dynamic analyses of fixed platforms 1 2.8 Use of approximate methods 1 2.9 Design of structural elements 1 OFFSHORE SOIL AND STRUCTURE MODELLING 3.0 3.1 Introduction to tubular joints 2 3.2 Possible modes of failure 2 3.3 Eccentric connections and offset connections 1 Cylindrical and rectangular structural members 3.4 1 3.5 In plane and multi plane connections 1 3.6 Parameters of in-plane tubular joints 1 3.7 Kuang's formulae 1 **ANALYSIS OF OFFSHORE STRUCTURES** 4.0 4.1 Elastic stress distribution 4.2 2 **Punching shear Stress** 4.3 Overlapping braces 1 4.4 Stress concentration 1 Chord collapse and ring stiffener spacing 4.5 1 4.6 Stiffened tubes 1 4.7 External hydrostatic pressure 1 5.0 **DESIGN OF OFFSHORE STRUCTURES** 5.1 Fatigue of tubular joints 2 5.2 Fatique behaviour 1 Palmgren-Miner cumulative damage rule 5.3 1 Blast walls; Platform survival capacity and Plastic design methods. 5.4 1 5.5 **Blast Mitigation** 1 Design of structures for high temperature 5.6 1 5.7 Fire Rating for Hydrocarbon fire 1 5.8 Behavior of steel at elevated temperature 1

Course Designer

Dr.K.VijayaSundravel - vijayasundravel@ksrct.ac.in

70 PSE E34	Experimental Methods and Model Analysis	Category	L	т	Р	Credit	
			3	0	0	3	1

- To understand the different experimental stress analysis methods and their application in structural testing
- To explore the principle, types, and applications of strain gauges in measuring forces and strains
- To familiarize students with photo elasticity principles and their role in stress analysis
- To gain knowledge of modern strain measurement devices like hydraulic jacks, electronic load cells, proving rings, and their calibration
- To introduce the concept of long-term structural health monitoring using advanced sensors such as vibrating wire and fibre optic sensors

Pre-requisites

Strength of Materials and Basic Physical Science and Electronics Courses

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Understand various force and strain measuring equipment	Remember
CO2	Demonstrate the strain measuring equipment	Understand
CO3	Apply the principles of photo elasticity to analyze stress distribution in materials	Apply
CO4	Apply suitable non-destructive testing methods.	Apply
CO5	Evaluate long-term structural health using advanced sensors	Analyse

Mapping with Programme Outcomes

Coo			Po	Pos							
Cos	1	2	3	4	5	6					
CO1	3	-	-	=	-	-					
CO2	3	-	-	=	-	-					
CO3	3	=	-	2	-	-					
CO4	3	=	-	=	3	-					
CO5	3	=	-	3	-	-					
3 - Stron	3 - Strong; 2 - Medium; 1 – Some										

Assessment Pattern

Bloom's Category		sessment Tests rks)	Model Examination	End Sem Examination
Category	1	2	(Marks)	(Marks)
Remember	10	10	30	30
Understand	10	10	20	20
Apply	20	20	30	30
Analyse	20	20	20	20
Evaluate	-	-	-	-
Create	-	-	-	-
Total	60	60	100	100

Sylla	bus									
	K.S.Rangasamy College of Technology – Autonomous R2022									
	M.E - Structural Engineering									
	70 PSE E34-Experimental Techniques and Instrumentation									
Some	ester -	ŀ	Hours/Weel		Total	Credit		ximum Mar		
Jenne	CSICI	L	Т	Р	Hours	С	CA	ES	Total	
		3	0	0	45	3	40	60	100	
Basic gaug and v	c Conce es (Me wheat s	ept – Meas echanical, I tone bridge	surements urements of Electrical, A e – Rosette	f displacem .coustical e	tc) – Strair	gauge circ	cuits – pote	entiometer	[9]	
Linea	ar Vari		e nts erential Tra nents. Vibra				rs for vel	ocity and	[9]	
Indica and p	ating a proces		ng devices ms – Catho						[9]	
Photo		•	s of photoe aration	elasticity – I	Polariscope	Isoclinics	s and Isoch	nromatics–	[9]	
Ultras laser	sonic to	esting princ ructural tes	ing Method ciples and a sting – Adva chniques, G	pplication - anced NDT	methods -	 Ultrasonio 	pulse ech		[9]	
	•		•		•	<u> </u>		tal Hours	45	
Text	Book(s):								
1.			xperimental							
2.			iley W.F, "E	xperimental	l stress Ana	lysis", McG	raw-Hill, Ind	c. NewYork,	1991	
Refe	rence(
1.	Ltd.,	Ne	ew Delhi, 19	97				v-Hill Publis		
2.	1997							Internationa	,	
3.	Educa	ation,2012						dition, Mc	•	
4.	Ravis	ankar.K. a	and Chella ncrete Stru				Non-Dest	ructive Tes	sting and	

Course Contents and Lecture Schedule No. of S. No. **Topics** hours 1.0 **Force and Strain Measurements** Introduction to force and strain measurements 1.1 1 1.2 Explanation of displacement, strain pressure, force & torque 1 1.3 Various strain gauges - Mechanical Strain gauges - Principle & Working 1 Electrical Strain gauges - Principle & Working 1.4 1 Acoustical Strain gauges - Principle & Working 1.5 1 Working of potentiometer 1.6 1 Working of Wheat stone bridge 1.7 1 Rosette analysis concepts and formulas 1.8 1 1.9 Rosette analysis problems 2 1.10 Use of Hydraulic jack, load cell and proving ring 1 2.0 **Vibration Measurements** 2.1 Introduction to transducers 1 Linear Variable Differential Transducers – Operation and use 2.2 1 2.3 Transducers for velocity measurements 1 Transducers for acceleration measurements 2.4 1 Vibration meter – Principle and working 2.5 1 2.6 Working principle of Seismographs 1 2.7 Seismogram and its inference 1 3.0 **Data Acquisition Systems** 3.1 Introduction to data acquisition systems 1 Static data recording devices 2 3.2 Dynamic data recording devices 3.3 1 3.4 Data acquisition and processing systems 1 3.5 Cathode Ray Oscilloscope – Operation and use 1 XY Plotter – Principle & Construction 3.6 1 3.7 1 Chart plotter 3.8 Digital data acquisition systems 1 4.0 **Photoelasticity** 4.1 Introduction to photoelasticity& Principles 1 4.2 Optics of photoelasticity 1 4.3 Plane Polariscope – Working principle 1 4.4 Circular Polariscope - Working principle 1 4.5 Isoclinics and isochromatics - Properties & importance 1 2 4.6 Methods of stress seperation **Non Destructive Testing Methods** 5.0 5.1 Introduction to NDT and its scope 1 5.2 Ultrasonic testing principles and application 1 5.3 Rebound hammer – Working Principle 1 Holography& its uses 5.4 1 5.5 Use of laser for structural testing 1 Advanced NDT methods- Ultrasonic pulse echo method 2 5.6 5.7 Impact echo method 1 Impulse radar techniques 5.8 1 5.9 **GECOR** 1 5.10 Ground penetrating radar (GPR). 1

Mr.K.Angu Senthil - angusenthil@ksrct.ac.in

Course Designer

70 PSE E35	Matrix Method of Structural Analysis	Category	L	Т	Р	Credit	
		PE	3	0	0	3	

- To learn the basics in measurements, strain gauge types, and applications
- To understand various devices for vibration measurement
- To acquire knowledge in data acquisition systems
- To learn photo elasticity and its applications
- To perform nondestructive testing methods in structures

Pre-requisites

Fundamentals of Mathematics, knowledge of basic Science

Course Outcomes On the successful completion of the course, students will be able to Understand the concepts of energy theorems Apply CO₂ Formulation of stiffness and flexibility matrix for various co-ordinates Analyse CO3 To solve the beam using stiffness and flexibility methods Understand CO4 To solve the frame using stiffness and flexibility methods Analyse To understand the concepts of solving the truss using stiffness and Apply CO₅ flexibility methods

Cos			Po	S								
COS	1	2	3	4	5	6						
CO1	3	3	2	2	3							
CO2	3	3	3	2	3	3						
CO3	2	3	3	3	2	2						
CO4	2	2	3	3	2	1						
CO5	2	3	2	3	2	2						
3 - Stron	3 - Strong; 2 - Medium; 1 – Some											


Assessment Pattern									
Bloom's		sessment Tests arks)	End Sem Examination (Marks)						
Category	1	2							
Remember	10	10	20						
Understand	10	10	20						
Apply	20	20	30						
Analyse	20	20	30						
Evaluate	-	-	-						
Create	-	-	-						
Total	60	60	100						

Syllab								
	K.S.I	Rangasamy				omous R2	022	
				ictural Eng				
70 PSE E35-Matrix Method of Structural Analysis								
Semes	stor	Hours/Wee		Total	Credit		ximum Mar	
Ocilies	L	Т	Р	Hours	С	CA	ES	Total
ll l	3	0	0	45	3	40	60	100
Concepts In Structural Analysis								
Structure-Loads-Response-Equilibrium of Force-Compatibility of Displacements-Force-								[9]
	cement relation			analysis-En	ergy metho	ods-Energy	concepts	[0]
	on displacemen							
	Concepts and							
	matrix operation							[9]
	nate systems-tra			ffness and	flexibility m	natrix-Equiv	alent joint	[-]
	stiffness and flex							
	Analysis of St							
	iction-axial stiffn							[9]
	al element (2 DC						al stiffness	
	d for plane truss		DOF) - ana	llysis by flex	dibility metho	oa.		
	Analysis of Be		h h		4 -4: cc /	4 DOE\	e	
	ntional stiffness							[9]
	ss matrix for c					unuous be	ams-iorce	
	rmation matrix- Analysis of Pla			k-analysis p	rocedure.			
	ntional stiffness			o olomont c	tiffnoss mat	riv(6DOE)	gonoration	
	ctural stiffness							[9]
	ransformation m						le Italiles-	
10100 11	iansionnation in	atrix-cicrici	it liexibility	matrix and	arialysis pro		tal Hours	45
Text B	Book(s):						rtai i ioui s	70
	Devados Menon,	"Advanced	Structural A	nalvsis" Nar	osa Publish	ing House N	lew Delhi 20	10
١	Vaidyanadhan.F							
	Publications, Ne			iprononcive	oti dotai di	, mary oro	voi. i a voi	z , Laxiiii
	ence(s):	W Bollin, 20						
		adhvav.Ahd	ul Hamid S	heikh."Matri:	x and Finite	Element A	nalyses of S	tructures"
	1. Madhujit Mukhopadhyay,Abdul Hamid Sheikh,"Matrix and Finite Element Analyses of Structures" .Ane books India,2009.							,
Pajasakaran S. and Sankara Suhramanian G. "Computational Structural Machanics" Pro							chanics", Pre	entice Hall
2. (of India Pvt Ltd, New Delhi, 2011.							
3.	Manickaselvam N	Л.К.," Eleme	nts of Matrix	And Stabili	ty Analysis c	f Structures	", Khanna Pu	ublishers,
	New Delhi,2004.				-			
4.	T.S.Thandavam	oorthy "Stru	ctural Analy	sis" Oxford	University I	Press, New	Delhi, 2011	

Course Contents and Lecture Schedule No. of S. No. **Topics** hours 1.0 **Concepts In Structural Analysis** 1.1 Introduction - Forces and Displacement Measurements 1.2 Equilibrium of Force 1 1.3 Compatibility of Displacements 1 Types of Structures, load and response 1.4 1 1.5 Force- Displacement relation 1 1.6 Levels of structural analysis 1 1.7 **Energy methods** 1 Energy concepts based on displacement field 1.8 1 1.9 Energy concepts based on force field 1 2.0 **Matrix Concepts and Matrix Analysis of Structures** 2.1 **Matrix Operations** 1 2.2 Linear Simultaneous Equations 1 2.3 Eigen values 1 2.4 Eigen vectors 1 2.5 Coordinate Systems 1 **Transformation Matrix** 1 2.6 2.7 Stiffness And Flexibility Matrix 1 Equivalent joint loads 2.8 1 2.9 Stiffness And Flexibility Methods simple problems 1 3.0 **Matrix Analysis of Structures With Axial Elements** 3.1 Introduction on axial elements 1 3.2 Axial Stiffness and Flexibility Matrix 1 Analysis By Conventional Stiffness Method For Axial Element 2 3.3 (2 DOF) 3.4 Analysis By Flexibility Method 2 Analysis by conventional stiffness method for plane truss element 2 3.5 (4 DOF) Analysis By Flexibility Method 3.6 1 4.0 **Matrix Analysis of Beams** 4.1 Conventional stiffness method for beams 1 4.2 Beams element stiffness (4 DOF) 1 4.3 Generation of stiffness matrix for continuous beams 1 4.4 Flexibility method for continuous beams 1 4.5 Force Transformation Matrix 1 Element Flexibility Matrix 1 4.6 4.7 Analysis for the flexibility matrix 1 4.8 Problems in Flexibility matrix 1 5.0 **Matrix Analysis of Plane Frames** Conventional stiffness method for plane frame 5.1 1 5.2 Element stiffness matrix(6DOF) 1 Generation of structural stiffness matrix 5.3 1 5.4 Analysis Procedure for structural stiffness matrix 2 Flexibility method for plane frames 2 5.5 5.6 Force transformation matrix 1 Element flexibility matrix and analysis procedure 5.7 1 **Course Designer**

1. Dr.J.Abdul Bari - abdulbari@ksrct.ac.in

R2/ w.e.f. 01.08.2025 Passed in the BOS Meeting Held on 17.06.2025 Approved in Academic Council Meeting held on 19.07.2025

70 PSE E36	Wind and Cyclone Effect	Category	L	T	Р	Credit
70 F3E E30	on Structures	PE	3	0	0	3

- Understand wind characteristics, measurement methods, and dynamic effects.
- Analyze wind impact on rigid and flexible structures, including vortex shedding.
- Apply code provisions for designing wind-resistant structures.
- Examine cyclone effects on structures and cladding design.
- Explore wind tunnel testing, modeling, and data analysis.

Pre-requisites

Structural Analysis and Structural Design

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Explain wind characteristics, measurement methods, and dynamic effects.	Analyse
CO2	Analyze wind effects on various structures, including tall buildings and chimneys	Analyse
CO3	Design some special structures subjected to wind loading	Apply
CO4	Design of structures for cyclone	Analyse
CO5	Utilize wind tunnel studies for structural analysis	Analyse

Cos	Pos								
Cos	1	2	3 4		5	6			
CO1	3	3	3		2				
CO2	3	3	3		2				
CO3	3	3	3		2				
CO4	3	3	3		2				
CO5	3	3	3		2				
3 - Stron	3 - Strong; 2 - Medium; 1 – Some								

		K.S.Ra	angasamy (College of	Technolog	y – Autono	omous R20)22	
				M.E. Struc	tural Engin	eering			
		70) PSE E36 -	Wind and	Cyclone E	ffect on St	ructures		
Como	-1	ŀ	lours/Weel	(Total	Credit	Ma	aximum Mai	·ks
Seme	L T P Hours C CA ES							Total	
II		3	0	0	45	3	40	60	100
Wind Characteristics and Load Parameters Introduction, Types of wind – Characteristics of wind – Method of Measurement of wind velocity, variation of wind speed with height, shape factor, aspect ratio, drag and lift effects - Dynamic nature of wind –Pressure and suctions - Spectral studies, Gust factor									[9]
Classific	cation g, trans		ures * es – Rigid oration of str						[9]
Design	of Strue strial		t ures * vind loading Tall Buildi						[9]
cyclone	e effect on cla	on – low Iddings – o	rise structu design of cla modeling of	adding – u					[9]
Wind T requirer	unnel : nents - ation fa	- Aero dyna ctors – Wir	pes of win amic and A nd tunnel da	ero-elastic	models, Pi	rediction of	accelerati	on – Load	[9]
							То	tal Hours:	45
Text Bo	ok(s):								
1.			, G. and Pa				elopments	in Wind En	gineering:
2.	Holm	es, J.D. and	d Bekele, S.	, "Wind Loa	ading of Stru	uctures (4th	Edition)", F	Routledge, 2	021.
Referer	nce(s):								
1.		, E. and Y , 2020.	eo, D.H., "\	Wind Effec	ts on Struc	tures: Mod	ern Structu	ıral Design 1	or Wind",
2.			Biondini, F. Press, 201		ngineering:	A Handbo	ok for Stru	ictural Engir	eers and
	Karee	em, A. and	Kline, P.,	"Wind En	gineering: 1	A Guide to	the Wind	I-Resistant	Design of
3.	Buildi	ngs", Wiley	, 2018.						

^{*} SDG 9: Industry, innovation and infrastructure

Course (Course Contents and Lecture Schedule					
S. No.	Topics	No. of hours				
1.0	Wind Characteristics and Load Parameters					
1.1	Introduction to Wind Engineering	1				
1.2	Types of Wind (steady, gusty, cyclonic, tornadoes)	1				
1.3	Characteristics of Wind: Speed, Direction, and Turbulence	1				
1.4	Wind Velocity Measurement Techniques	1				
1.5	Variation of Wind Speed with Height (Logarithmic/Power Law)	1				
1.6	Shape Factor and Aspect Ratio	1				
1.7	Drag and Lift Forces on Structures	1				
1.8	Dynamic Nature of Wind: Pressure and Suction Effects	1				
1.9	Spectral Studies and Gust Factor	1				
2.0	Effect of Wind on Structures					
2.1	Classification of Structures: Rigid and Flexible	1				
2.2	Effects of Wind on Different Types of Structures	1				
2.3	Vortex Shedding and Aerodynamic Instability	1				
2.4	Translational Vibration and Galloping of Structures	1				
2.5	Static and Dynamic Wind Effects on Tall Buildings	1				
2.6	Wind Effects on Chimneys and Slender Structures	1				
2.7	Damping Effects and Wind-Induced Vibrations	1				
2.8	Wind Tunnel Studies for Structure Response	1				
2.9	Case Studies of Wind Effects on Various Structures	1				
3.0	Design of Special Structures					
3.1	Design Principles for Wind-Resistant Structures	1				
3.2	Estimation of Wind Loads as per IS 875, ASCE 7, and NBC	1				
3.3	Design of Industrial Structures under Wind Loads	1				
3.4	Wind Design Considerations for Tall Buildings	1				
3.5	Wind Loading on Chimneys and Transmission Towers	1				
3.6	Design of Steel Monopoles and Tall Structures	1				
3.7	Advanced Computational Methods for Wind Load Estimation	1				
3.8	Case Studies of Wind-Resistant Design	1				
3.9	Use of Software in Wind Load Design	1				
4.0	Cyclone Effects					
4.1	Cyclonic Wind Characteristics	1				
4.2	Effects of Cyclones on Low-Rise Buildings and Sloped Roofs	1				
4.3	Cyclone Effects on Tall Buildings	1				
4.4	Impact of Wind-Borne Debris on Structures	1				
4.5	Design of Cladding Systems for Cyclone Protection	1				
4.6	IS Code Provisions for Cyclonic Design	1 2				
4.7	Analytical Modeling for Cyclone Effects					
4.8	Use of Simulation Tools for Cyclone Impact	11				
5.0 5.1	Wind Tunnel Studies	1				
5.1	Importance of Wind Tunnel Testing Types of Wind Tunnels: Subsonic, Supersonic, Boundary Layer	1				
5.3	Types of Wind Tunnel Models: Rigid, Aeroelastic, Pressure	2				
5.4	Aeroelastic Studies and Dynamic Response Prediction	1				
5.5	Wind Tunnel Data Analysis and Load Combination Factors	2				
5.6	Application of Wind Tunnel Studies in Design	2				
0.0	1 Application of Willia Turinor Stadios III Design					

Course Designer(s)

1. Dr.J.Abdul Bari

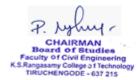
- abdulbari@ksrct.ac.in

70 PSE E41	CADD for Structures	Category	L	Т	Р	Credit	
		PE	3	0	0	3	

- To gain knowledge on Computer graphics and drafting software packages
- To Analyse the structure using computer methods
- To acquire knowledge on computer aided designing and detailing
- To know Project scheduling using CPM and PERT
- To learn theartificial intelligence systems

Pre-requisites

Courses -Structural Analysis, RCC and Steel Design


Course Outcomes

On the successful completion of the course, students will be able to

CO1	Choose software packages for 2D drafting	Apply
CO2	Perform structural analysis using software	Analyse
CO3	Design the structures with computer methodologies	Understand
CO4	Optimize the structural design with the help of software	Analyse
CO5	Apply artificial intelligence in construction industry	Apply

Coo	Pos								
Cos	1	2	3 4		5	6			
CO1	3	2	3	2	3	2			
CO2	3	3	3	3	3	2			
CO3	3	3	3	3	3	2			
CO4	3	2	3	2	3	2			
CO5	3	3	3	3	3	3			
3 - Stron	3 - Strong; 2 - Medium; 1 – Some								

Assessment Patte	ern		
Bloom's		ssessment Tests arks)	End Sem Examination (Marks)
Category	1	2	
Remember	10	10	20
Understand	10	10	20
Apply	20	20	30
Analyse	20	20	30
Evaluate	-	-	-
Create	-	-	-
Total	60	60	100

Sylla	bus									
	K.S.Rangasamy College of Technology – Autonomous R2022									
	M.E - Structural Engineering									
	70 PSE E41- CADD for Structures									
Semo	nester Hours/Week Total Credit Maximum Marks									
		L T P Hours C CA ES Total								
Com		3 Graphics	0	0	45	3	40	60	100	
Grap	hic prii	nitives - Ti				afting - Mo			[9]	
			ing - Graph	ic standards	s - Drafting	software pa	ckages and	l usage		
Comp	puter r	Analysis nethods of lication pac		analysis -	Finite Ele	ement prog	ramming -	- Analysis	[9]	
	puter a	Design ided desigi	n of steel a	nd RC Stru	ictural elem	ents - Deta	iled drawin	g – Bill of	[9]	
Linea		ramming -			st-optimalit n and appli	y analysis - cations	- Project sc	heduling -	[9]	
Introd	duction					pert system of neural ne		cture and	[9]	
					•		To	tal Hours	45	
Text	Book(
1.		rishna Pilla New Delhi		s Menon, "	Reinforced	Concrete [Design", Mo	Graw-Hill E	ducation,	
2.	Punmia R C and Jain A K "Comprehensive Design of Steel Structures". Laymi Publications									
Refe	Reference(s):									
1.	, , , , , , , , , , , , , , , , , , ,									
2.	2. Peter W, Christensen, Anders Klarbring "An Introduction to Structural Optimisation", Springer 2009.									
3.	3. Meghre A S and Kadam K M, Finite Element Method in Structural Analysis, Khanna Publishers, New Delhi, 2014									
4.	4. KavehA, "Applications of Metaheuristic Optimization Algorithms in Civil Engineering", Springer, 2017									

Course Contents and Lecture Schedule No. of S. No. **Topics** hours 1.0 **Computer Graphics** 1.1 Introduction to computer graphics 1.2 Graphic primitives 1 1.3 **Transformations** 1 1.4 Basics of 2D drafting 1 1.5 Modeling of curves and surfaces 1 1.6 Solid modeling 1 1.7 Graphic standards 1 1.8 Drafting software packages and usage 2.0 **Structural Analysis** 2.1 Fundamentals of Structural Analysis 1 2.2 Computer methods of structural analysis 1 2.3 Various software used for Analysis 2 2.4 FEM technique 1 2.5 Finite Element programming 2 2.6 Analysis through application packages 2 3.0 **Structural Design** Fundamentals of RCC and Steel design 3.1 1 3.2 **Codal Provisions** 1 3.3 Computer aided design of steel structures 2 2 3.4 Computer aided design of RCC structures 3.5 Reinforcement detailing 1 Structural Steel detailing 3.6 1 Bill of materials 3.7 1 4.0 **Optimization** 4.1 Linear programming 2 4.2 Simplex algorithm 1 1 4.3 Post optimality analysis 4.4 Project scheduling 1 4.5 CPM technique 1 4.6 PERT technique 1 4.7 Genetic algorithm and applications 2 5.0 **Artificial Intelligence** 5.1 Introduction to Artificial intelligence 1 5.2 1 Heuristic search 5.3 Knowledge based expert systems 2 5.4 Architecture and applications of KBES 2 5.5 Expert system shells 1 Principles of neural network 2 5.6

Course Designer

Mr.K.Angu Senthil - angusenthil@ksrct.ac.in

70 PSE E42	Design of Industrial Structure	Category	L	т	Р	Credit	:
	on dotal o	PE	3	0	0	3	ĺ

- Design of Steel Gantry Girders.
- Design of Steel Portal, Gable Frames.
- Design of Steel Bunkers and Silos.
- Design of Chimneys and Water Tanks.
- Design of Tubular Structures

Pre-requisites

Knowledge of portal frame analysis, structural steel design, foundation design

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Explain the planning and functional requirements of Industrial Structures	Apply
CO2	Design the Pre – Engineered structures and foundations	Analyse
CO3	Demonstrate the structural aspects of machine foundation and containment structures.	Understand
CO4	Design the Turbo generator foundations & conveyor systems.	Analyse
CO5	Design of offshore structures with failure probability	Apply

Cos	Pos							
	1	2	3	4	5	6		
CO1	1	2	3	2	3	2		
CO2	3	2	3	2	3	2		
CO3	1	2	3	2	3	2		
CO4	3	2	3	2	3	2		
CO5	2	2	3	2	3	2		
3 - Strong; 2 - Medium; 1 – Some								

Assessment Pattern							
Bloom's		ssessment Tests arks)	End Sem Examination (Marks)				
Category	1	2					
Remember	10	10	20				
Understand	10	10	20				
Apply	20	20	30				
Analyse	20	20	30				
Evaluate	=	-	-				
Create	-	-	-				
Total	60	60	100				

Sylla	bus								
K.S.Rangasamy College of Technology – Autonomous R2022									
M.E - Structural Engineering									
70PSE E42- Design of Industrial Structure									
	ester	Hours/Week		Total	Credit	Maximum Ma			
	11	L	<u> </u>	Р	Hours	C	CA	ES	Total 100
									100
Steel Gantry Girders Introduction, loads acting on gantry girder, permissible stress, types of gantry girders and							[9]		
	crane rails, crane data, maximum moments and shears, construction								
Portal Frames Design of portal frame with hinge base, design of portal frame with fixed base – Gable							[9]		
Struc	ctures –	- Lightweigh	nt Structure	S					
Desi side	Steel Bunkers and Silos Design of square bunker – Jansen's andAiry's theories – IS Code provisions – Design of side plates – Stiffeners – Hooper – Longitudinal beams Design of cylindrical silo – Side plates – Ring girder – stiffeners							[9]	
Chimneys Introduction dimensions of steel stacks chimney lining breech openings and access						[9]			
Water Tanks Design of rectangular riveted steel water tank – Tee covers – Plates – Stays – Longitudinal and transverse beams –Design of staging – Base plates – Foundation and anchor bolts						[9]			
Total Hours							45		
Text	Book(
1.		Ram Chandra., "Design of Steel Structures", 13th Ed., Standard Publishers, 2011.							
2.	Koncz, J, "Manual of Precast Construction Vol I & II" Bauverlay GMBH, 1971.								
Reference(s):									
1.	Punmia B. C., Jain Ashok Kr., Jain Arun Kr., "Design of Steel Structure", Lakshmi Publishers, 2011.								
2.	Subramaniyam, N. "Design of Steel Structures", (As per IS 800-2007), Oxford University press, 2014							-	
3.		Handbook on Functional Requirements of Industrial buildings, SP32 – 1986, Bureau of Indian Standards, New Delhi 1990							
4.	Henn W., "Buildings for Industry, vols.I and II", London Hill Books, 1995.								

Course Contents and Lecture Schedule No. of S. No. **Topics** hours 1.0 **Steel Gantry Girders** 1.1 Introduction 1.2 Loads acting on gantry girder 1 1.3 Permissible stress 1 1.4 Types of gantry girders and crane rails 2 1.5 Crane data, maximum moments 2 1.6 2 Shears, construction 2.0 **Portal Frames** Design of portal frame with hinge base 2.1 1 2.2 Design of portal frame with fixed base 1 2.3 Gable Structures 1 Lightweight Structures 2.4 1 2.5 Suspended roof structures analysis 1 2.6 Suspended roof structure design 1 2.7 Design of Foundations for industrial structures 1 2.8 Types of power plants 1 2.9 Design philosophy of Turbo generator foundation 1 3.0 **Steel Bunkers and Silos** Design of square bunker 2 3.1 3.2 Jansen's and Airy's theories 2 3.3 IS Code provisions 1 3.4 Design of side plates 1 Stiffeners 3.5 1 Hooper 1 3.6 3.7 Longitudinal beams Design of cylindrical silo 1 4.0 Chimneys 4.1 Introduction 2 4.2 2 Dimensions of steel stacks Chimney lining, breech openings and access ladder 4.3 1 4.4 Loading and load combinations 1 4.5 Design considerations & stability consideration 1 4.6 Design of base plate 1 4.7 Design of foundation bolts, design of foundation. 1 5.0 **Water Tanks** Design of rectangular riveted steel water tank 5.1 5.2 Tee covers 1 5.3 Plates - Stays 1 5.4 Longitudinal and transverse beams 1 5.5 Design of staging 1 5.6 Base plates 1 Foundation and anchor bolts 5.7 1 5.8 Case Study 1

Course Designer

1. Dr.K.Vijaya Sundravel - vijayasundravel@ksrct.ac.in

70 PSE E43	Disaster Resistant Structures	Category	L	Т	Р	Credit	
	on dotal oo	PE	3	0	0	3	1

- To analyses the behavior of life line structures during disasters.
- To study about the safety analysis of community structures.
- To assess the procedure for damaged structures, along with ground improvement techniques.
- To gain the knowledge of detailing of Structures and Components
- To understand the concept of designing structures to withstand disaster.

Pre-requisites

Courses - Disaster Management

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Apply the design philosophy for resisting natural calamities.	Apply			
CO2	Evaluate the response of dams, bridges and identify strengthening				
002	techniques.				
CO3	Discuss the damage assessment and retrofitting.	Understand			
CO4	Describe the use of modern analysis, design and detailing for life line	Analyse			
CO4	structures.				
CO5	Evaluate the techniques of damage assessment.	Apply			

Coo	Pos								
Cos	1	2	3	4	5	6			
CO1	3	2	3	3	3	2			
CO2	3	3	3	3	3	3			
CO3	3	2	3	2	3	3			
CO4	2	2	3	3	2	2			
CO5	3	3	3	3	3	3			
3 - Stron	3 - Strong; 2 - Medium; 1 – Some								

Assessment Patte	ern		
Bloom's		ssessment Tests larks)	End Sem Examination (Marks)
Category	1	2	
Remember	10	10	20
Understand	10	10	20
Apply	20	20	30
Analyse	20	20	30
Evaluate	-	-	-
Create	-	-	-
Total	60	60	100

Syllab	us									
	K.S.Rangasamy College of Technology – Autonomous R2022									
	M.E - Structural Engineering									
	70 PSE E43- Disaster Resistant Structures									
Semes	otor	ŀ	lours/Wee	k	Total	Credit	Ma	ximum Mar	rks	
Sellie	Ster	L	Т	Р	Hours	С	CA	ES	Total	
III		3	0	0	45	3	40	60	100	
Philoso Interna	ophy ational	for design		earthquake,		nd flood, ts mi-urban ar			[9]	
Respo	nse o	Structure of dams, b ability asse	ridges, buil	dings ,Stre	ngthening ı	neasures ,	Safety and	alysis and	[9]	
Testing	g and		- Classifica			afety point lifferent tech		nethods of	[9]	
Use of	f mode	ern materia				duction, Use	e of moderr	n analysis,	[9]	
Dama Dama	ge As ge su	sessment Irveys - M	of Structu laintenance	res and mod	ifications to	o improve ound impro			[9]	
							To	tal Hours	45	
Text B										
						y Ed Secon				
			C Edwards,	"Repair of	Concrete S	tructures", E	Blakie and S	Sons,1993.		
Refere										
1. R.N. Raiker, "Learning from failures - Deficiencies in Design, Construction and Service", R & D Center (SDCPL) RaikerBhavan, Bombay, 1987.										
2.										
	3. N. Subramanian, "Design of Reinforced Concrete Structures", Oxford University Press E Second, 2014.					Press Ed				
4.										

Course Contents and Lecture Schedule No. of S. No. **Topics** hours 1.0 **Behaviour of Life-Line Structures** Philosophy for design to resist earthquake. 1.1 1.2 Cyclone and flood, tsunami. 1 1.3 National and International codes of practice. 1 2 1.4 By-Law of urban. 1.5 Semi-urban areas. 2 2 1.6 Traditional and modern structures. 2.0 **Community Structures** Response of dams, bridges, buildings 2.1 1 2.2 Response of bridges. 1 2.3 Response of buildings. 1 2.4 Strengthening measures. 2 2.5 Safety analysis and rating. 2 2.6 2 Reliability assessment. 3.0 Rehabilitation and Retrofitting Testing and evaluation 3.1 2 3.2 Classification of structures for safety point of view Methods of strengthening for different disasters 3.3 2 3.4 Qualification test 2 3.5 Different techniques 2 4.0 **Detailing of Structures and Components** 4.1 Use of modern materials 2 Modern materials impact on disaster reduction 4.2 2 4.3 Use of modern analysis 1 4.4 Design techniques optimization for performance 2 4.5 Construction techniques optimization for performance 2 5.0 **Damage Assessment of Structures** 5.1 1 Damage surveys Maintenance to improve hazard resistance 5.2 1 5.3 Modifications to improve hazard resistance 1 Different types of foundation 2 5.4 5.5 Different types of foundation impact on safety 2 5.6 Ground improvement techniques. 2

Course Designer

Dr.M.Velumani - velumani@ksrct.ac.in

70 PSE E44	Industrial Steel Structures	Category	L	Т	Р	Credit	
	33.400	PE	3	0	0	3	Ī

- To learn guidelines for industrial structures
- To acquire knowledge in design of roof and gantry girders
- To learn the design of special structures in industries
- To perform the design of tower structures
- To learn the behavior and design of pre engineering buildings

Pre-requisites

Courses -Strength of Materials, Design of Steel Structures

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Classify the different types of industrial structures based on planning and functional requirements.	Apply
CO2	Assess the general behavior of steel shell roofs and design of gantry girders and gantry columns.	Analyse
CO3	Evaluate the various forces acting on Bunkers, silos, chimney's, cooling towers steel storage tanks and design them.	Understand
CO4	Calculate the different types of forces acting on towers and design the tower foundations.	Analyse
CO5	Analysis and design of pre-engineered structures	Apply

Coo	Pos										
Cos	1	2	3	4	5	6					
CO1	3	2	3	3	3	2					
CO2	3	3	3	3	3	3					
CO3	3	2	3	2	3	3					
CO4	3	2	3	3	2	2					
CO5	3	3	3	3	3	2					
3 - Stron	g; 2 - Medium;	1 – Some		3 - Strong; 2 - Medium; 1 – Some							

Assessment Patt	ern		
Bloom's Category		ssessment Tests arks)	End Sem Examination (Marks)
Category	1	2	
Remember	10	10	20
Understand	10	10	20
Apply	20	20	30
Analyse	20	20	30
Evaluate	-	=	-
Create	-	=	-
Total	60	60	100

Syllal	bus								
	K.S.Rangasamy College of Technology – Autonomous R2022								
	M.E - Structural Engineering								
			70 P	SE E44- In	dustrial Ste	el Structu	res		
Seme	sctor	F	lours/Weel	k	Total	Credit	Ма	ximum Mar	ks
		L	T	Р	Hours	С	CA	ES	Total
III		3	0	0	45	3	40	60	100
Class regard	ificatio	n of Indust	ntilation an	dustrial stru		anning for l ion against			[9]
	for I	Building ndustrial B	Buildings- S	iteel shell	roofs- Gan	try Girder	s- Design	of gantry	[9]
Bunke	ers and		imney and	cooling Tow	vers – Desiç	gn of steel s	torage tank	is	[9]
Micro	wave	.attice Tow e towers - s – Testing	- Transmis	sion Line	Towers -	pipe trac	k structure	s- Tower	[9]
Introd	uction	-section sp	ered Structoecification connection of	Types of	assemblies	–analysis	and desi	gn of pre	[9]
							To	tal Hours	45
Text I	Book(
 Santhakumar A.R., and Murthy S.S., "Transmission Line structures", Tata Mc Graw- Hill, 1992. Subramaniam.N., "Design of Steel Structures ",(As per IS 800-2007)", Oxford university press, 2014. 									
Reference(s):									
1. Shiyekar M.R., "Limit State Design in Structural Steel", PHI Learning Private Limited, New Delhi, 2013									
2.	2. Rajagopalan K., "Storage Structures", Oxford IBH Publishing Company Ltd, 1989.								
3.	3. IS 800 – 2007, "Code of Practice for General Construction in steel", BIS, New Delhi.								
4.	4. Teaching Resources for Structural Steel Design, INSDAG, Kolkata, 2010.								

Course Contents and Lecture Schedule No. of S. No. **Topics** hours 1.0 **Planning and Functional Requirements** 1.1 Classification of Industries 1.2 Classification of Industrial structures 1 Planning for lay out Requirements regarding Lighting 1.3 2 1.4 Ventilation 1 1.5 Fire safety 1 1.6 Protection against noise and vibration 1 1.7 Guide lines from factories Act. 2 2.0 **Industrial Building** Roofs for Industrial Buildings 2 2.1 2.2 Steel shell roofs 2 2.3 Gantry Girders 2 2.4 Design of gantry columns 3 3.0 **Industrial Appurtenances** 3.1 Bunkers 3.2 Silos 1 Chimney 2 3.3 3.4 **Cooling Towers** 2 3.5 Design of steel storage tanks 3 4.0 **Design of Lattice Towers** 4.1 Micro wave towers 1 4.2 **Transmission Line Towers** 1 4.3 2 Pipe track structures 4.4 Tower Foundations 4.5 Testing towers 3 5.0 **Design of Pre Engineered Structures** 5.1 Introduction-section specification 1 5.2 1 Types of assemblies Analysis of pre-engineered structure 2 5.3 5.4 Design of pre-engineered structure 3 5.5 Connection details 2

Course Designer

1. Dr.M.Velumani - velumani@ksrct.ac.in

70 PSE E45	Corrosion Engineering	Category	L	Т	Р	Credit
		PE	3	0	0	3

- To rationalize the periodic properties such as corrosive environments
- To recall the basics of Electrochemical and Polarization
- To endow with an overview of Corrosive concentration
- To enable the students with various concepts like corrosion testing
- To implement the principles of corrosion prevention

Pre-requisites

Courses –Strength of Materials, Design of Steel Structures, Concrete Technology

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Define the basic concepts on corrosion.	Apply
CO2	Discuss the testing and evaluation of forms of corrosion	Analyse
CO3	Describes the different types of corrosive environments.	Understand
CO4	Illustrate the concepts of corrosion testing.	Analyse
CO5	Apply the corrosion prevention.	Apply

Coo	Pos						
Cos	1	2	3	4	5	6	
CO1	3	2	3	3	2	2	
CO2	3	3	3	3	2	3	
CO3	3	2	3	2	3	2	
CO4	2	2	2	3	2	2	
CO5	3	3	3	3	3	2	
3 - Stron	3 - Strong; 2 - Medium; 1 – Some						

Assessment Pattern							
Bloom's		ssessment Tests arks)	End Sem Examination (Marks)				
Category	1	2					
Remember	10	10	20				
Understand	10	10	20				
Apply	20	20	30				
Analyse	20	20	30				
Evaluate	-	-	-				
Create	-	-	-				
Total	60	60	100				

	KSF	Rangasamy	College	f Technolo	av – Auton	omous P2	022	
	N.3.1	variyasailiy		ctural Eng		onious RZ	U44	
		70			Engineering	n		
_	-	Hours/Weel		Total	Credit		ximum Mar	ks
Semeste	er L	T	<u>,</u> Р	Hours	C	CA	ES	Total
III	3	0	0	45	3	40	60	100
Corrosion Corrosion Polarisati Velocity	tion Corrosion – (Damage – Rate Expreion – passivity Effect of ter Metallurgical	Classificationssions. Ele Essions. Ele Environme Enperature –	on of Corro ectrochemica ental Effects	osion. Corro al Aspects s: Effect of	sion Princi : Electroch oxygen and	ples : Intro nemical Re oxidizers -	oduction – eactions – – Effect of	[9]
Forms o Galvanic Area Eff Combatir Metallurg .Austentic Selective Other All - Galvani effects – prevention	f Corrosion Corrosion: Elfect — Prevening Crevice Corpical Variables c Stainless Steel Leaching: Dezoy systems. Erroc Effect — Comitime to cracking — corrosion F	MF and Galvation. Crevice rosion – Filife – Evaluation els – Weld Desiron Corrosion Corrosion Corrosion Erosion – Environ – Environ	ce Corrosion Corrosion & Preven Decay – Knif Characterist Concorrosion mental & M	n: Environrion. Pitting – tion of pitting e Line Attacics, Mechane Films – Ven. Stress coretallurgical f	nental Fact Solution co g damage. k. ism, preven locity – Turb rosion: cracl actors – Me	ors – Meo mposition – Intergranula tion – Grapl ulence – Im < morpholog chanism – r	chanism – Velocity – arcorrosion hitization – pingement yy – Stress methods of	[9]
Mineral A Acid. Org purity wa by halog	re Environmen Acids: Sulfuric A ganic Acids – A Iter – soils – A ens – Liquid m rrosion – liqui	Acid – Nitric Alkalies – A erospace – netals and fu	tmosphere Biological coused salts –	Corrosion – orrosion – H - sewage ar	Sea water luman body id plant – w	Fresh waCorrosioraste treatm	iter – High n of metals ent – Dew	[9]
Corrosion Introduction Measuring Cleaning Galvanic & stress	on Testing ion – Classifica ig & Weighing - specimens aftor corrosion high corrosion – NA aneous tests of	 Exposure er exposure temperature CE Test me 	Fechniques – temperatu and pressu	– Duration – ıre – Standa ıre – Erosior	- Planned Int rd expressio n – Intergran	terval Tests ns for corro ular corrosio	Aeration – sion rate – on – pitting	[9]
Corrosion Prevention Materials Selection: Metals & Alloys – Metal purification. Alteration of Environment: changing mediums – Inhibitors. Design: Wall Thickness – Design Rules. Cathodic& Anodic protection – comparison. Coatings: Metallic & other Inorganic coatings – Organic coatings – corrosion control standards – Failure Analysis.					rotection – - corrosion	[9]		
	-ls/a):					To	otal Hours	45
Taret P								70
	มาอ บ. คบเนลเโล	Corrector	Enginooring	Third Editio	n Mc Grove	Hill Bool	(Company	
1. Ma 19 2. Ra - E	88. aoul Francois, " Elsevier, 2018						c Company, l	New York
1. Ma 19 2. Ra - E	88. aoul Francois, " Elsevier, 2018 ce(s):	Corrosion ar	nd its Conse	equences foi	Reinforced	Concrete S	tructures", IS	New York
2. Reference J.	88. noul Francois, " Elsevier, 2018 ce(s): H. Brophy, R. I	Corrosion ar	nd its Conse	equences foi	Reinforced	Concrete S	tructures", IS	New York
1. Ma 19 2. Ra - E Reference 1. J.	88. noul Francois, " Elsevier, 2018 ce(s): H. Brophy, R. I ork, 1994	Corrosion ar	nd its Conse	equences for	Reinforced	Concrete S als," Wiley I	tructures", IS	New York
1. Ma 19 2. Ra - I Reference 1. J. Yo 2. An	88. noul Francois, " Elsevier, 2018 ce(s): H. Brophy, R. I	Corrosion ar	e structure a	equences for and Propertincrete Struc	Reinforced es of Materia	Concrete S als," Wiley I	tructures", IS nter-science	New York

Course Contents and Lecture Schedule No. of S. No. **Topics** hours 1.0 **Planning and Functional Requirements** 1.1 Cost of Corrosion Corrosion Engineering 1.2 1 Definition of Corrosion - Environments 1.3 1 Corrosion Damage - Classification of Corrosion. 14 1 1.5 Corrosion Principles. 1 Introduction - Corrosion Rate Expressions. 1.6 1 Electrochemical Aspects: Electrochemical Reactions - Polarisation -1.7 Environmental Effects: Effect of oxygen and oxidizers – Effect of Velocity – 1 1.8 Effect of temperature Effects of Corrosive concentration – Effect of Galvanic Coupling – 1 1.9 Metallurgical Aspects 2.0 **FORMS OF CORROSION** Galvanic Corrosion: EMF and Galvanic Series - Environmental Effects -1 2.1 Distance Effect – Area Effect Prevention, Crevice Corrosion: Environmental Factors - Mechanism 2.2 **Combating Crevice Corrosion** Filiform Corrosion. Pitting - Solution composition - Velocity - Metallurgical 2.3 Variables Evaluation & Prevention of pitting damage. Intergranular corrosion . Austentic 1 2.4 Stainless Steels – Weld Decay – Knife Line Attack. Selective Leaching: Dezincification Characteristics, Mechanism, prevention – 1 2.5 Graphitization – Other Alloy systems. Erosion Corrosion: Surface Films - Velocity - Turbulence - Impingement -1 2.6 Galvanic Effect 2.7 Combating Erosion corrosion. Stress corrosion: crack morphology 1 Stress effects - time to cracking - Environmental & Metallurgical factors 2.8 1 Mechanism - methods of prevention - corrosion Factors - Hydrogen 2.9 Blistering – Hydrogen Embrittlement – Prevention. **CORROSIVE ENVIRONMENTS** 3.0 Mineral Acids: Sulfuric Acid – Nitric Acid 3.1 1 Hydrochloric Acid – Hydrofluoric Acid 3.2 1 Phosphoric Acid. Organic Acids - Alkalies 1 3.3 3.4 Atmosphere Corrosion – Sea water – Fresh water 1 3.5 High purity water – soils – Aerospace 1 3.6 Biological corrosion – Human body – Corrosion of metals by halogens 1 3.7 Liquid metals and fused salts – sewage and plant – waste treatment 1 3.8 Dew point corrosion – liquid metal embrittlement of cracking 1 Hydrogen peroxide - Rebar corrosion 3.9 1 4.0 **CORROSION TESTING** Introduction – Classification – Purpose – Materials and specimens 4.1 1 4.2 surface preparation – Measuring & Weighing – Exposure Techniques 1 Duration – Planned Interval Tests Aeration 4.3 1 4.4 Cleaning specimens after exposure 1 4.5 temperature – Standard expressions for corrosion rate 1 4.6 Galvanic corrosion high temperature and pressure – Erosion 1 4.7 Intergranular corrosion pitting & stress corrosion 1 4.8 NACE Test methods – Linear polarization 1 Paint Tests – Sea water tests – Miscellaneous tests of metals. 4.9 1

5.0 5.1

CORROSION PREVENTION

Materials Selection: Metals & Alloys

5.2	Metal purification.	1
5.3	Alteration of Environment: changing mediums – Inhibitors	1
5.4	Design: Wall Thickness	1
5.5	Design Rules	1
5.6	Cathodic& Anodic protection – comparison	1
5.7	Coatings: Metallic & other Inorganic coatings	1
5.8	corrosion control standards	1
5.9	Failure Analysis.	1

Course Designer

Dr.M.Velumani - velumani@ksrct.ac.in

70 PSE E46	Reliability Analysis of	Category	L	T	Р	Credit
	Structures	PC	3	0	0	0

- To understand probability concepts in structural reliability
- To learn reliability measures and performance functions
- To explore FOSM and Monte Carlo simulation methods
- To analyze system reliability in different configurations
- To Apply statistical methods for reliability assessment

Pre-requisites

Basic knowledge of Physics


Course Outcomes

On the successful completion of the course, students will be able to

CO1	Achieve the Knowledge of design and development of problemsolving skills.	Remember
CO2	Understand the principles of reliability.	Understand
CO3	Design and develop analytical skills.	Apply
CO4	Summarize the Probability distributions	Analyse
CO5	Understands the concept of System reliability	Analyse

00-			P	Os		
COs	1	2	3	4	5	6
CO1	3	2	3	-	-	-
CO2	2	1	-	-	-	-
CO3	3	2	2	-	-	-
CO4	2	-	1	-	-	-
CO5	2	2	1	-	-	-

Assessment Pattern						
Diam's Catagoni	Continuous Asses	Model Examination				
Bloom's Category	1	2	(Marks)			
Remember	30	10	30			
Understand	30	10	20			
Apply		20	30			
Analyse		20	20			
Evaluate	-	-	-			
Create	-	-	-			
Total	60	60	100			

	K.S	.Rangasamy	College of	Technology	– Autonom	ous R2022		
			B.E. Civ	vil Engineeri	ng			
70 PSE E46 - Reliability Analysis of Structures								
Como	-4	Hours/Week		Total	Credit	Ma	aximum Marl	(S
Semes	L	Т	Р	Hours	С	CA	ES	Total
II	3 0 0 45 3 40 60							100
ungroupe	alysis* Il representation His ed data, measures o t line, curve of the fo	of dispersion,	measures o	f asymmetry.	Curve fitting	and Correla		[9]
Random interpreta	ity Concepts* events-Sample spa ation, probability ax ram, statistical inde	ioms, additio	n rule, mult	iplication rule	e, conditiona	I probability,		[9]
Probabili theorem.	Variables* ty mass function, Probability distribut ons, Normal, Log no	tions: Discret	e distributior					[9]
Measure: limiting s	ty Analysis* s of reliability-facto tate. Reliability Metl nd Advanced First (nods-First Or	der Second	Moment Met	hod (FOSM)	, Point Estim		[9]
Influence combined reliability accuracy	Reliability* of correlation code systems, Uncertally Simulation Technials, Generation of radius random variables	ainty in reliat iques: Monte andom numb	oility assess Carlo simu pers, randor	ments- Cont lation- Statis n numbers	idence limits tical experin	s, Bayesian nents, samp	revision of le size and	[9]
						Tota	al Hours:45	45
Text Boo	ok(s):							
1.	A Papoulis, Probal	bility, Randor	n Variables a	and Stochast	ic Processes	, McGraw-H	ill, New York,	2017.
	R E Melchers, St		ability Analy	sis and Pre	diction, Thire	d Edition, Jo	ohn Wiley &	Sone Ltd
2.	Chichester, Englar	nd,2018.						
	Chichester, Englar	nd,2018.						OONS Etu
	Chichester, Englar	rasekaran, C	Offshore Stru	uctural Engir	eering: Reli	ability and I	Risk Assessn	
Reference	Chichester, Englarce(s): Srinivasan Chand	rasekaran, C I6. , C. Allin C						nent, CRC
Reference 1.	Chichester, Englar ce(s): Srinivasan Chand Press, Florida, 201 Jack R Benjamin	rasekaran, C I6. , C. Allin C York, 2014.	ornell, Prob	ability, Statis	stics, and D	ecision for	Civil Enginee	nent, CRC

^{*} SDG 9: Industry, innovation and infrastructure

Course C	Course Contents and Lecture Schedule					
S. No.	Topics	No. of hours				
1.0	Data Analysis	<u> </u>				
1.1	Basics of structural reliability and importance	1				
1.2	Probability concepts in reliability analysis	1				
1.3	Random variables and probability distributions	1				
1.4	Mathematical expectation and Chebyshev's theorem	1				
1.5	Safety margin and reliability index	1				
1.6	Factor of safety and performance functions	1				
1.7	First Order Second Moment (FOSM) method	1				
1.8	Advanced First Order Second Moment (AFOSM) method	1				
1.9	Probability applications in reliability	1				
2.0	Probability Concepts					
2.1	Probability and Statistical Methods in Reliability	1				
2.2	Bayes' theorem and its application in reliability	1				
2.3	Conditional probability and statistical independence	1				
2.4	Total probability theorem and probability tree diagrams	1				
2.5	Discrete probability distributions: Binomial and Poisson	1				
2.6	Continuous probability distributions: Normal and Log-normal	1				
2.7	Probability density functions and cumulative distributions	1				
2.8	Statistical sampling methods and confidence limits	1				
2.9	Regression and correlation in reliability studies	1				
2.10	Statistical applications in reliability	2				
3.0	Random Variables	•				
3.1	Measures of reliability and reliability assessment	1				
3.2	Reliability-based design principles	1				
3.3	Load and resistance factor design (LRFD) concepts	1				
3.4	Monte Carlo simulation for structural reliability	1				
3.5	Point Estimate Method (PEM) in reliability	1				
3.6	Failure modes and limit state functions	1				
3.7	Hasofer-Lind's reliability index	1				
3.8	Importance sampling techniques in reliability studies	1				
3.9	Mass moment of inertia of thin rectangular section.	1				
3.10	Reliability performance evaluation	2				
4.0	Reliability Analysis	•				
4.1	Concept of system reliability	1				
4.2	Series, parallel, and combined system reliability	1				
4.3	Influence of correlation coefficients on system reliability	1				
4.4	Redundant and non-redundant systems	1				
4.5	Bayesian approach in reliability assessment	1				
4.6	Reliability assessment of bridges and high-rise structures	1				
4.7	Application of reliability analysis in seismic design	1				
5.0	System Reliability	•				
5.1	Basics of simulation techniques in reliability	1				
5.2	Monte Carlo simulation: Concepts and methodology	1				
5.3	Sample size and accuracy in simulations	1				
5.4	Generation of random numbers for simulations	1				
5.5	Random number distributions: Uniform and Normal	1				
5.6	Application of simulation in structural failure prediction	1				
5.7	Uncertainty modeling in structural design	1				

Course Designer(s)

1. Dr.K.Vijaya Sundravel - vijayasundravel@ksrct.ac.in

R2/ w.e.f. 01.08.2025 Passed in the BOS Meeting Held on 17.06.2025 Approved in Academic Council Meeting held on 19.07.2025

70 DSE E51	Advanced Prestressed	Category	L	Т	Р	Credit
70 PSE E51	Concrete	PE	3	0	0	3

- Understand the principles and general mechanical behavior of prestressed concrete
- To Analyse the transfer of prestress and time dependent factors like losses of prestress
- Design of prestressed concrete flexural members
- Design of tension and compression members in prestressed concrete.
- Analyse and design of composite members and special structural elements like water tank, poles, pipes.

Pre-requisites

Fundamentals of Mathematics, knowledge in mechanics.

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Evaluate the internal forces and deflection in prestressed concrete.	Apply
	Design the pre-stressing layout and understand the behavior of pre-	Analyse
CO2	stressed	
	concrete elements under practical loading conditions	
CO3	Practice the Analysis and design of continuous beams and extend the	Understand
003	knowledge on concept of linear transformation.	
CO4	Outline the design of tension and compression members in	Analyse
004	prestressing.	-
CO5	Illustrates the design of composite members and partial prestressing.	Apply

Mapping with Programme Outcomes

Coo		Pos							
Cos	1	2	3	4	5	6			
CO1	2	1	1	3	2	3			
CO2	2	1	2	3	2	3			
CO3	3	2	2	2	1	3			
CO4	2	2	1	2	3	3			
CO5	1	2	1	1	3	3			
3 - Strone	g; 2 - Medium;	1 – Some				_			

Assessment Pattern							
Bloom's		sessment Tests arks)	End Sem Examination (Marks)				
Category	1	2					
Remember	10	10	20				
Understand	10	10	20				
Apply	20	20	30				
Analyse	20	20	30				
Evaluate	-	-	-				
Create	-	-	-				
Total	60	60	100				

R2/ w.e.f. 01.08.2025 Passed in the BOS Meeting Held on 17.06.2025 Approved in Academic Council Meeting held on 19.07.2025

Syllabus									
K.S.Rangasamy College of Technology – Autonomous R2022									
	M.E - Structural Engineering								
	70 PSE E51- Advanced Prestressed Concrete								
Semester	ŀ	lours/Weel		Total	Credit		ximum Ma		
	L I P Hours C CA ES Tota						Total		
	III 3 0 0 45 3 40 60 1								
	of Prestres					 11:	. 04	[0]	
	of Prestress							[9]	
	Analysis met Flexural Me		s, deflection	i (snort-iong	j term), can	iber, cable	iayouis.		
	of flexural		determinat	ion of ultir	nate flevur	al etranath	_ Codal		
	-Design of							[9]	
end blocks	•	noxului illo	mboro, boo	ngii ioi oilo	ar, boria ar	id toroion.	Design of		
	Continuous	Beams							
	nd design of		beams - N	lethods of a	achieving co	ontinuity –	concept of	[9]	
linear trans	formations,	concordant	cable profil	e and gap o	cables	•	·	1-1	
Design of	Design of Tension and Compression Members								
	tension me							[9]	
	d concrete c							[9]	
	ure - its app		ne design p	iles, flagma	sts and sim	ilar structur	es.		
	Composite						5 " 1	101	
	beams - a				ngth - their	application	ns. Partial	[9]	
prestressin	g - its advar	itages and a	applications	<u> </u>		T	tal Hours	45	
Text Book	(e)·					10	nai nours	40	
NKr	ishna Raju,	"Prestress	ed Concret	e" Tata M	cGraw-Hill	Publishing	Company	Itd New	
	i, 2018.	1 10311033	ca Conoret	o, rata ivi		1 dollaring	Company	Ltd., INCW	
2. Lin,	Γ.Y & Burns	, "Design of	Prestresse	d Concrete	Structures"	John Wiley	/ & Sons, 19	982.	
Reference(s):									
1. Devadas Menon & A.K Sengupta, "Prestressed Concrete Structure (Web Course)", NPTEL Course Notes, 2008.)", NPTEL			
	Krishna Raju.N, "Problems & Solutions - Prestressed Concrete", CBS Publishers						lishers &		
Distributors., New Deini, 2015.									
3. Rajagopalan.N "Prestressed Concrete", Narosa Publishing House, 2005.									
4. IS: IS 1343: 2012, "Prestressed Concrete - Code of Practice" Second Revision									

Course Contents and Lecture Schedule No. of S. No. **Topics** hours 1.0 **Principles of Prestressing** 1.1 Principles of Prestressing 1.2 Types and systems of prestressing 2 1.3 Analysis methods losses 2 1.4 Deflection (short-long term) 2 1.5 1 Cable layouts 2.0 **Design of Flexural Members** Behaviour of flexural members 2.1 1 Determination Of Ultimate Flexural Strength 2.2 1 Codal provisions 1 2.3 2.4 Design of flexural members 2 2.5 Design for shear, 1 2.6 Design for bond 1 2.7 Design for torsion 1 2.8 Design of end blocks 1 3.0 **Design of Continuous Beams** Analysis of continuous beams 2 3.1 3.2 Design of continuous beams 2 3.3 Methods of achieving continuity 2 3.4 Concept of linear transformations 1 2 3.5 Concordant cable profile and gap cables **Design of Tension and Compression Members** 4.0 4.1 Design of tension members 1 4.2 Application in the design of prestressed pipes 1 4.3 Prestressed concrete cylindrical water tanks 1 4.4 Design of compression members with flexure 2 4.5 Design of compression members without flexure 2 2 4.6 Application in the design piles, flagmasts and similar structures 5.0 **Design of Composite Members** 5.1 Composite beams- Introduction 1 5.2 Analysis and design of Composite beams 2 Ultimate strength of Composite beams 5.3 2 5.4 Partial prestressing 2 5.5 Advantages and Applications of Partial prestressing 2

Course Designer

1. Dr.R.Jagadeesan – <u>jagadeesan@ksrct.ac.in</u>

70 PSE E52	Advanced Concrete Technology	Category	L	Т	Р	Credit	
		PE	3	0	0	3	

- To understand the knowledge of properties of durability of concrete.
- To conduct various tests on properties of special concretes.
- To gain knowledge about formwork and quality control.
- To gain knowledge about the properties of concreting under special circumstances.
- To understand the Mix design using IS method.

Pre-requisites

Basic knowledge of properties of concrete making materials.

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Discuss about the methods of concrete mix design	Apply
CO2	Describe the special concretes	Analyse
CO3	Outline the durability of concrete.	Understand
CO4	Identify the concepts form work and quality control	Analyse
CO5	Illustrate the behavior of concreting under special circumstances.	Apply

Coo	Pos								
Cos	1	2	3	4	5	6			
CO1	3	2	2	2	2	2			
CO2	3	3	2	2	2	2			
CO3	3	3	-	-	2	1			
CO4	2	2	-	3	3	1			
CO5	3	2	2	3	3	1			
3 - Stron	3 - Strong; 2 - Medium; 1 – Some								

Assessment Pattern						
Bloom's		ssessment Tests larks)	End Sem Examination (Marks)			
Category	1	2				
Remember	10	10	20			
Understand	10	10	20			
Apply	20	20	30			
Analyse	20	20	30			
Evaluate	=	-	-			
Create	=	-	-			
Total	60	60	100			

Syllabus								
	K.S.Rangasamy College of Technology – Autonomous R2022							
M.E - Structural Engineering								
	70 PSE E52- Advanced Concrete Technology							
Semester	ŀ	lours/Weel	(Total	Credit	Ma	ximum Mar	ks
	L	Т	Р	Hours C CA ES				
	III 3 0 0 45 3 40 60							100
	Introduction							
Dimensiona and harder design.	Concrete: Past, Present and Future- Constituent MaterialsStrength of Concrete-Dimensional Stability of Concrete - Chemical and Mineral Admixtures-Properties of Fresh and hardened Concrete - Principles of Concrete Mix Design-Methods of Concrete mix design							[9]
Concrete-P Vaccum Co	and Heaviolymers in oncrete-Rea	vy Weight Concrete-S dy Mixed C	teel fiber R	Reinforced (Concrete-Fe			[9]
Permeabilit Thermal pr	Durability of Concrete Permeability-chemical attack-sulphate attack-Quality of water - marine conditions- Thermal properties of concrete-fire resistance-methods of making durable concrete - Mass Concrete-Formwork-Structural Concrete Block Masonry -Quality Control of							[9]
	Materials a	nd System					of IS 456-	[9]
Concreting Undergroun Hot weather existing	2000 on Quality -Errors in Concrete Constructions-Quality Management. Concreting Under Special Circumstances Underground Construction-Concreting in Marine Environment-Under water Construction-Hot weather and Cold weather concreting. Tests on Concrete: Evaluation of Strength of existing structures-investigation Techniques-Tests on Hardened Concrete-Non Destructive Testing-Semi destructive testing techniques-Tests on fresh Concrete.						[9]	
						To	otal Hours	45
Text Book								
		ncrete Techi						
2. Santha Kumar A.R., Concrete Technology, Oxford Higher Education, New Delhi, 2018.								
	Reference(s):							
	1. Neville, A.M., Properties of Concrete, Pitman Publishing Limited, London, 2010							
2. Gambir,M.L. "Concrete Technology", Tata McGraw Hill, Publishing Co,Ltd,NewDelhi,2011.								
3. Farid	3. Krishnaraju.N, "Design of Concrete mixes", Sehgal Educational Consultants Pvt.Ltd., Faridabad, 2010.							
4. Kumar. Neeraj Jha, "Formwork for Concrete Structures", McGraw Hill Education, 2017.								

Course Contents and Lecture Schedule No. of S. No. **Topics** hours 1.0 Introduction Introduction about concrete and concrete making materials 1.1 Concrete - Past, Present and Future 1.2 1 Constituent Materials - Concrete 1.3 1 1.4 Strength of Concrete 1 1.5 **Dimensional Stability of Concrete** 1 Chemical and Mineral Admixtures 1.6 1 1.7 Properties of Fresh and hardened Concrete 1 1.8 Principles of Concrete Mix Design 1 Methods of Concrete mix design. 1.9 1 **Special Concretes** 2.0 Lightweight and Heavy Weight Concrete 2.1 1 2.2 High Strength Concrete 1 2.3 **High Performance Concrete** 1 2.4 Polymers in Concrete 1 2.5 Steel fiber Reinforced Concrete 1 2.6 Ferro cement Concrete 1 2.7 Vacuum Concrete 1 2.8 Ready Mixed Concrete 1 2.9 SIFCON - SIMCON 1 3.0 **Durability of Concrete** 3.1 Permeability & chemical attack 1 3.2 2 sulphate attack & Quality of water 3.3 marine conditions 3.4 Thermal properties of concrete - fire resistance 2 3.5 methods of making durable concrete 3.6 Mass Concrete 1 3.7 Formwork for concrete 1 3.8 Structural Concrete & Block Masonry 3.9 Quality Control of Concrete Construction. 4.0 **Formwork and Quality Control** 4.1 Formwork Materials and Systems 1 4.2 Specifications 2 4.3 Design 2 4.4 Recommendations of IS 456- 2000 on Quality 1 Recommendations of IS 456- 2000 on Quality 4.5 1 4.6 **Errors in Concrete Constructions** 1 4.7 Quality Management. 1 **Concreting Under Special Circumstances** 5.0 5.1 **Underground Construction** 1 Concreting in Marine Environment 5.2 1 5.3 **Under water Construction** 1 5.4 Hot weather and Cold weather concreting 1 Tests on Concrete: Evaluation of Strength of existing structures-investigation 2 5.5 5.6 Tests on Hardened Concrete-Non Destructive Testing 1 Semi destructive testing techniques 5.7 1

Course Designer

5.8

Dr. S. Gunasekar - gunasekar@ksrct.ac.in

Tests on fresh Concrete

1

70 PSE E53	Earthquake resistant design of Structures	Category	L	Т	Р	Credit	
		PE	3	0	0	3	l

- To learn the fundamentals of seismology and basic earthquake mechanisms, tectonics types of ground motion, and propagation of ground motion.
- Determine the maximum dynamic response of an elastic vibrating structure to a given forcing function
- Learn the fundamentals of building code based structural design
- Determine the static design base shear based on the type of structural system, irregularity, location and occupancy
- Recognize special conditions such as irregular buildings, building separation, P-delta

Pre-requisites

Fundamentals of Mathematics, knowledge of basic Science

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Identify the causes and effects of earthquake and describe the terms related to earthquake.	Apply
CO2	Define the basic concepts of elements of vibration and behavior of structures under cyclic loading.	Analyse
CO3	Practice the codal provisions for design and detailing of earthquake resistant structures.	Understand
CO4	Formulate the design principles for Non-engineered buildings and design provisions for bridges and dams.	Analyse
CO5	Categorize the new concepts on different types of base isolation techniques.	Apply

Coo	Pos							
Cos	1	2	3	4	5	6		
CO1	3	3	2	2	3	-		
CO2	3	3	3	2	3	3		
CO3	2	3	3	3	2	2		
CO4	2	2	3	3	2	1		
CO5	2	3	2	3	2	2		
3 - Stron	3 - Strong; 2 - Medium; 1 – Some							

Assessment Pattern							
Bloom's		ssessment Tests larks)	End Sem Examination (Marks)				
Category	1	2					
Remember	10	10	20				
Understand	10	10	20				
Apply	20	20	30				
Analyse	20	20	30				
Evaluate	-	-	-				
Create	-	-	-				
Total	60	60	100				

Syllabus								
	K.S.F	angasam	/ College o		-	nomous R2	022	
	70	DOE EEO		ctural Eng		011		
		PSE E53 lours/Wee	- Earthqual	ke resistan Total	t design of Credit		s ximum Mar	rke
Semester		T	r P	Hours	Credit	CA	ES ES	Total
III	3	0	0	45	3	40	60	100
Elements	of Seismold	gy	l	l .				
Elements	of Engineerin	g Seismolo	ogy, Charac	teristics of E	Earthquakes	s, History, S	Seismic	[0]
Susceptibi	lity of Indian	Subcontine	ent, Perform	ance of stru	ıctures duriı	ng past eart	hquakes,	[9]
Lessons le	arnt from pa	st earthqua	ikes.					
Theory of	Vibrations							
Theory of	vibrations ,	Building Sy	stems , Ri	gid Frames	, Braced F	rames, She	ear Walls,	[0]
Behavior	of RC, Stee	and Pres	tressed co	ncrete elen	nents unde	r cyclic loa	ding ,Soil	[9]
liquefactio	n and preven	tion metho	ds					
Codal Pro	visions for	Design & D	Detailing					
Concept	of Earthqua	ke Resista	ant Design,	Response	e Spectrum	n ,Design	Spectrum	
Provisions	of Seismic	Code IS	1893 (Part	I) - 2002	,Structural	Configurat	ion , 3 D	[9]
computer	analysis of b	uilding (The	eory) ,Desig	n and Deta	iling of Fran	nes, Shear	Walls and	
Framed W	alls ,Provisio	ns of IS-13	920.					
Non Engi	neered Build	lings						
Design of	Non Enginee	red constr	uction, strer	ngthening of	f buildings,	Design Pro	visions for	[9]
Bridges ar	d Dams							
Base Isola	ation Techni	ques						[9]
Modern Co	oncepts –Bas	e Isolation	, Adoptive s	ystems and	Case stud			
Toyt Book	/o\.					То	tal Hours	45
1. Dr.V	inod," Earthq	uake-resist	ant design o	of building s	tructures", F	Rajkamal Pr	ا ess,Delhi.Fir	st edition-
Shar	3 <u>,</u> shikant K.Du	ngal Farth	nuake resist	ant design (of structures	s" Oxford H	ligher Educa	ation India
^{2.} 2013	3,.	gai, Laitii	quare resist	unt design v	or structures	o , Oxioid i	ilgiloi Eddoc	illon mala
	Reference(s):							
I. Prer	Prentice Hall Inc., 2001.							
	oru Wakabaya york, 1986	ashi, "Desig	ın of Earthq	uake Resist	ant Building	s", McGraw	–Hill Book	Company,
3. Clou	gh R.W. and							
	kaj Agarwal 8 ₋td, New Delh		nrikhande, "I	Earthquake	Resistant D	esign of Str	uctures", PH	I Learning

Course Contents and Lecture Schedule No. of S. No. **Topics** hours 1.0 **Elements of Seismology** 1.1 Elements of Engineering Seismology Characteristics of Earthquakes 1.2 1 1.3 Seismic Susceptibility of Indian Subcontinent 1 1.4 Performance of structures during past earthquakes 2 1.5 Lessons learnt from past earthquakes 1 2.0 **Theory of Vibrations** 2.1 Theory of vibrations 1 2.2 **Building Systems** 1 Rigid Frames and Braced Frames 2 2.3 2.4 Behavior of RC under cyclic loading 1 2.5 Behavior of Steel elements under cyclic loading 1 2.6 Behavior of Prestressed concrete elements under cyclic loading 1 2.7 2 Soil liquefaction and prevention methods 3.0 **Codal Provisions for Design & Detailing** Concept of Earthquake Resistant Design 3.1 3.2 Response Spectrum 1 3.3 Design Spectrum 1 3.4 Provisions of Seismic Code IS 1893 (Part I) - 2002 1 3.5 3 D computer analysis of building (Theory) 2 3.6 **Design and Detailing of Frames** 1 3.7 Shear Walls and Framed Walls 1 Provisions of IS-13920 3.8 1 Non Engineered Buildings 4.0 4.1 Design of Non Engineered construction 2 4.2 Strengthening of buildings 1 4.3 Design Provisions for Bridges 3 4.4 3 **Design Provisions for Dams** 5.0 Base Isolation Techniques 5.1 Modern Concepts 1 5.2 Base Isolation 3 5.3 Adoptive systems 3 5.4 Case studies 2

Course Designer

1. Dr.J.Abdul Bari - abdulbari@ksrct.ac.in

70 PSE E54	Maintenance and Rehabilitation of	Category	Г	Т	Р	Credit
	Structures	PE	3	0	0	3

- To study the quality assurance for concrete construction, causes of deterioration of concrete structures.
- To study the different types of techniques for repair and rehabilitation of structure.
- To design and suggest repair strategies for deteriorated concrete structures including repairing with composites.
- To understand the strength and durability properties, their effects due to climate and temperature.
- To understand the mechanism of deterioration of concrete, damage assessment, repair materials

Pre-requisites

Fundamentals of Mathematics, knowledge of properties of construction materials and itsmechanics and concrete technology.

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Learn the properties related to mechanics of deterioration of	Apply
COT	concrete.	
CO2	Evaluate the basic concepts of the corrosion.	Analyse
CO3	Point out various types of techniques to repair crack, wear, fire and	Understand
003	leakage.	
CO4	Study the various types and properties of repair materials.	Analyse
CO5	Describe the various demolition techniques and demolition methods	Apply

Coo	Pos								
Cos	1	2	3	4	5	6			
CO1	2	1	1	3	2	3			
CO2	2	1	2	3	2	3			
CO3	3	2	2	2	1	3			
CO4	2	2	1	2	3	3			
CO5	1	2	1	1	3	3			
3 - Stron	g; 2 - Medium;	1 – Some							

Assessment Patt	ern		
Bloom's		ssessment Tests arks)	End Sem Examination (Marks)
Category	1	2	
Remember	10	10	20
Understand	10	10	20
Apply	20	20	30
Analyse	20	20	30
Evaluate	-	-	-
Create	-	-	-
Total	60	60	100

Syllabus								
	K.S.F	Rangasamy				nomous R2	022	
	70.0	DEEEA I		ictural Eng		of Structur	•	
_	-	lours/Wee		Total	Credit		es ximum Mar	ks
Semeste	L	T	P	Hours	C	CA	ES	Total
III	3	0	0	45	3	40	60	100
Introduct	on							
Quality as	surance for co	ncrete cons	struction as b	ouilt concret	e properties	strength, pe	ermeability,	[0]
thermal p	operties and	cracking. E	ffects due t	to climate, t	emperature,	, chemicals,	wear and	[9]
erosion, D	esign and con	struction er	rors.					
Durability	of Structure	S						
Corrosion	mechanism	 diagnosis 	s- causes a	and effects	- cover thi	ickness and	cracking,	
measuren	ents for corro	sion - meth	ods of corro	sion protect	tion, corrosi	on inhibitors	, corrosion	[9]
	teels, coatings			·				
	nce and Repa							
	: Maintenanc	•		ation Facet	ts of Mainte	enance imn	ortance of	
	ce Preventive	-				•		[9]
						•	cedule loi	
	a damaged s	iructure cau	ses of deter	ioration - tes	sung techniq	ues.		
	for Repair							
-	ncretes and r			•			•	
	insive cement	•	•					[9]
fibre reinfo	orced concrete	e, eliminato	rs and polyr	mers coatino	g for rebars	during repa	ir, foamed	
concrete,	mortar and dry	/ pack, vacu	um concrete	€.				
Techniqu	es for Repair	and rehabi	litation of s	tructures				
underpinn	nite and Sh ing. Repairs	to overcom	e low mem	ber strength	n, Deflection	n, Cracking,	Chemical	[9]
	weathering wated structures			ne exposure	Engineered	demolition	techniques	
101 Bilapile	ilea siraotaree	ouse state	1100			To	tal Hours	45
Text Boo								
ı. and	nison Campb Repair", Lon	gman Scie	ntific and Te	echnical UK	, 2001.			
2. 201	2. Peter H. Emmons, "Concrete Repair and Maintenance", Galgotia Publications Ed Second, 2010.							
	Reference(s): 1. R.T. Allen and S.C. Edwards, "Repair of Concrete Structures", Blakie and Sons, UK, 2007.							
₂ Vid	. Allen and S velli, B. "Re ,2010.							
	pert.TRatay, "	Forensic S	tructural En	gineering H	andbook", N	Mc Graw Hi	II, 2009.	
	lacdonald ,"C							

Course Contents and Lecture Schedule No. of S. No. **Topics** hours 1.0 Introduction 1.1 Introduction 1.2 Quality assurance for concrete 1 1.3 Permeability of Concrete 1 1.4 Thermal Properties and Cracking 2 1.5 Effects due to climate, temperature, chemicals, wear and erosion 2 1.6 Design and construction errors 2 2.0 **Durability of Structures** Corrosion Mechanism 2.1 1 Causes and Effectsof Corrosion 2.2 1 2.3 Cover Thickness and Cracking 2 2.4 Measurements for Corrosion 1 2.5 Methods of Corrosion Protection 1 2.6 Corrosion Inhibitors 1 Corrosion Resistant Steels 1 2.8 Coatings for reinforcement 1 2 Cathodic Protection 2.9 Maintenance and Repair Strategies 3.0 Various types of Repair and Rehabilitation Techniques 2 3.1 3.2 Maintenance of Structures 2 3.3 **Facets of Maintenance** 1 3.4 Importance of Maintenance and Their Preventive Measures 1 3.5 Inspection and their types 1 Assessment procedure for evaluating a damaged structures 1 3.6 3.7 Testing Techniques. 1 4.0 **Materials for Repair** 4.1 Special concretes and mortar 2 4.2 **Concrete Chemicals** 1 Special Elements for Accelerated Strength Gain 4.3 1 4.4 Expansive cement 1 4.5 Polymer Concrete, Sulphur Infiltrated Concrete 1 4.6 Ferro Cement Concrete, Fibre Reinforced Concrete 1 4.7 Foamed Concrete, Mortar and Dry Pack, Vacuum Concrete 1 Techniques for Repair and rehabilitation of structures 5.0 Rust, Gunite and Shotcrete Epoxy injection 5.1 5.2 Mortar Repair for Cracks 1 5.3 Shoring and Underpinning 1 Repairs to overcome low member strength 5.4 1 Deflection, Cracking, Chemical Disruption, Weathering Wear 5.5 1 5.6 Fire and Leakage 1 Marine Exposure Engineered Demolition Techniques for Dilapilated Structures 5.7 1 Case Studies 5.8 1

Course Designer

1. Dr.K.VijayaSundravel - vijayasundravel@ksrct.ac.in

P. Wywy C CHAIRMAN Board of Studies Faculty of Civil Engineering K.S.Rangasamy College of Technology TIRUCHENGODE - 637 215

60 CE E55	Design of Steel Concrete Composite	Category	L	Т	Р	Credit
00 OL L00	Structures	PE	3	0	0	3

- Understand the basics of steel-concrete composite construction.
- Analyze and design composite beams, columns, and slabs.
- Ensure effective shear connection and load transfer.
- Design shear connectors and composite connections.
- Apply design principles to practical composite structures.

Prerequisite

Design of Steel Structures

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Understand the fundamentals of steel-concrete composite structures.	Remember, Understand, Apply
CO2	Design composite beams, columns, and slabs effectively.	Remember, Understand, Apply
CO3	Analyze shear connections and load transfer mechanisms.	Remember, Understand, Apply
CO4	Design efficient shear connectors and structural connections.	Remember, Understand, Apply
CO5	Apply composite design principles to real-world structures.	Remember, Understand, Apply

Mapping with Programme Outcomes

Coo	Pos								
Cos	1	2	3	4	5	6			
CO1	3	3	3						
CO2	3	3	3						
CO3	3	2	2						
CO4	3	3	3						
CO5	3	3	3						
3 - Stron	g; 2 - Medium;	1 – Some							

Assessment Pattern

	Continuous Asse	End Sem Examination	
Bloom's Category	1	2	(Marks)
Remember (Re)	20	20	40
Understand (Un)	20	20	40
Apply (Ap)	20	20	20
Analyse (An)	-	-	-
Create (Cr)	-	-	-

	K.S.Ranga			echnology –		us R2022	2		
				ural Engineer					
			n of Stee	I concrete Co		<u>tructures</u>			
Seme	ester Hours	/ Week		Total hrs	Credit	M	laximum Ma	ırks	
OCITIO	L	Т	Р	Total III3	С	CA	ES	Total	
	3	0	0	45	3	40	60	100	
Introd	Introduction** Introduction to steel - concrete composite construction – Coes – Composite action – Serviceability and - Construction issues.								
Desig Shear	gn of Connections** r connectors – Types – Dection – Partial shear inte		onnection	s in composite	structures	– Degree	of shear	[09]	
Desig	gn of Composite Membe gn of composite beams, s	labs, colur	nns, bean	n – columns -	design of co	omposite t	trusses.	[09]	
	posite Box Girder Bridg luction - behaviour of box		dges - des	sign concepts.				[09]	
Case	Studies** studies on steel - concre osite structures.	te compos	ite constr	uction in buildi	ngs - seism			[09]	
							Total Hour	s 45	
Text	book(s):								
	Johnson R.P., "Composit Frames for Buildings", Vo					labs, Colu	ımns and		
	Oehlers D.J. and Bradfor Fundamental behaviour",				crete Struct	tural Mem	bers,		
Refe	rence(s):	-	•						
1. Owens.G.W and Knowles.P, "Steel Designers Manual", Steel Concrete Institute(UK), Oxford Blackwell Scientific Publications, 1992.							t		
2. D.J. Victor, "Essentials of Bridge Engineening," Oxford & IBH Publishing, New Delhi, 2001									
3. I	N. Krishna Raju, "Design	of Bridges	," Oxford	& IBH Publish	ing, New De	elhi, 1998			
	00.								

^{**}SDG9: Industry, innovation and infrastructure

Course Contents and Lecture Schedule

S.No	Topic	No.of Hours
1	Introduction	9
1.1	Introduction to steel	1
1.2	Concrete composite construction	2
1.3	Coes	1
1.4	Composite action	2
1.5	Serviceability	1
1.6	Construction issues.	1
2	Design of Connections	9
2.1	Shear connectors and its type	3
2.2	Design of connections in composite structures.	2
2.3	Degree of shear connection	2
2.4	Partial shear interaction.	2
3	Design of Composite Members	9
3.1	Design of composite beams	2
3.2	Design of composite slabs	2
3.3	Design of composite columns	1
3.4	Beam – columns	1
3.5	Design of composite trusses	3
4	Composite Box Girder Bridges	9
4.1	Introduction	3
4.2	Behavior of box girder bridges	3
4.3	Design concepts.	3
5	Case Studies	9
5.1	Case studies on steel	3
5.2	Concrete composite construction in buildings	3
5.3	Seismic behavior of composite structures.	3
	Total	45

Course Designer

1. Dr.M.Velumani

velumani@ksrct.ac.in

70 PSE E56	Mechanics of Fiber Reinforced Polymer	Category	L	T	Р	Credit
70 F3E E30	Composite Materials	PC	3	1	0	4

- To understand traditional materials like metals and polymers, and summarize the different manufacturing processes.
- To comprehend the key constituents of an FRP composite and common types of fiber.
- To Understand the problems involving the calculation of basic mechanical properties
- To Compare and contrast the different failure mechanisms.
- To Evaluate the suitability of different FRP composite materials

Pre-requisites

Basic knowledge of Engineering Mechanics, Reinforced Concrete Structures.

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Explain the various types of composites and their constituents	Remember
CO2	Derive the constitutive relationship and determine the stresses and strains in a composite material	Analyse
CO3	Analyze a laminated plate	Apply
CO4	Explain the various failure criteria and fracture mechanics of composites	Analyse
CO5	Design simple composite elements	Analyse

Mapping with Programme Outcomes

Coo	Pos									
Cos	1	2	3	4	5	6				
CO1	3	2	1							
CO2	3	2	1							
CO3	3	2	1							
CO4	3	2	1							
CO5	3	2	1							
3 - Stron	g; 2 - Medium;	1 – Some								

Assessment Pattern

Bloom's	Continuous Assess	ment Tests (Marks)	Model Examination	End Sem	
Category	1 2 (Marks)		(Marks)	Examination (Marks)	
Remember	10	10	30	30	
Understand	10	10	20	20	
Apply	20	20	30	30	
Analyse	20	20	20	20	
Evaluate	-	-	-	=	
Create	-	-	-	-	
Total	60	60	100	100	

R2/ w.e.f. 01.08.2025 Passed in the BOS Meeting Held on 17.06.2025 Approved in Academic Council Meeting held on 19.07.2025

Syllabus								
	K.S.R	angasamy	College of	Technolog	y – Autono	mous R20	22	
			B.E. Civ	vil Enginee	ring			
	70 PSE E56	- Mechanic	s of Fiber	Reinforced	Polymer Co	omposite M	Materials	
Semeste		lours/Wee	- -	Total	Credit	Maximum Mark		ks
Ocineste	" L	Т	Р	Hours	С	CA	ES	Total
II	3	1	0	60	4	40	60	100
Introduction matrixcons	on to Composi n to Composit tituents, Com s and ShortFibe	es, Classif posite Cor	ying compositruction,					[9]
Concepts i	ain Relations in solid mechai r Anisotropic M							[9]
Governing	of Laminated C equations for a rnamic and Sta	nisotropic a	ind orthotro					[9]
Displacem	d Fracture of C lent, Velocity ar motion —Proje	nd accelerat		elationship –	Relative mo	otion – Plar	ne Motion -	[9]
Meal and (ns and Design Ceramic Matrix osites, Review,	Composites		ons of Comp	osites, Com	nposite Join	ıts, Design	[9]
					Tota	l Hours:45	(Tutorial)	45
Text Book	(s):							
1 1	agarwal. B.D. Bı Composites", Fo				•	is and Perfo	ormance of F	iber
9	Hver M.W. and White S.R. "Stress Analysis of Fiber-Reinforced Composite Materials"							
Reference	(s):							
1 1	Daniel. I.M, and Dxford Universit		•	Mechanics o	of Composite	e Materials'	', Second Ed	lition,
2. J	ones R.M., "Me	chanics of	Composite	Materials", T	aylor and F	rancis Grou	ıp 1999.	
٠,	/lukhopadhyay.l ndia, 2005.	M, "Mechan	ics of Comp	oosite Mater	ials and Str	uctures", Ur	niversities Pr	ess,

^{*}SDG 9: Industry, innovation and infrastructure

Course C	Contents and Lecture Schedule	
S. No.	Topics	No. of hours
1.0	Introduction to Composite Materials	
1.1	Introduction to Composites	1
1.2	Classifying Composite Materials	1
1.3	Commonly Used Fiber Constituents	1
1.4	Commonly Used Fiber Constituents with examples	1
1.5	Commonly Used Matrix Constituents	1
1.6	Composite Construction and properties	1
1.7	Composite Construction and manufacturing processes.	1
1.8	Properties of Unidirectional Long Fiber Composites	1
1.9	Properties of Short Fiber Composites	1
2.0	Stress Strain Relations	,
2.1	Stress and Strain - Review	1
2.2	Material Behavior	1
2.3	Hooke's Law for Isotropic Materials - Review	1
2.4	Hooke's Law for Orthotropic Materials	1
2.5	Hooke's Law for Anisotropic Materials	1
2.6	Linear Elasticity for Anisotropic Materials	1
2.7	Rotation of Stresses	1
2.8	Rotation of Strains	1
2.9	Residual Stresses	1
3.0	Analysis of Laminated Composites	
3.1	Introduction to Plate Theory	1
3.2	Governing Equations for Orthotropic Plates	1
3.3	Governing Equations for Anisotropic Plates	1
3.4	Angle-Ply Laminates	1
3.5	Cross-Ply Laminates	1
3.6	Static Analysis of Composite Plates	1
3.7	Dynamic Analysis of Composite Plates	1
3.8	Stability Analysis of Composite Plates	1
3.9	Interlaminar Stresses	1
4.0	Failure and Fracture of Composites	
4.1	Displacement, Velocity, and Acceleration	1
4.2	Relationship between Displacement, Velocity, and Acceleration	1
4.3	Relative Motion - 1D	1
4.4	Vectors and Vector Operations (Review)	2
4.5	Plane Motion - Kinematics	1
4.6	Analysis of Projectile Motion	1
4.7	Projectile Motion with problems and Circular Motion	2
5.0	Applications and Design	
5.1	Metal Matrix Composites (MMCs	1
5.2	Ceramic Matrix Composites	1
5.3	Applications of Composites	1
5.4	Composite Joints	1
5.5	Design with Composites	2
5.6	Review of Composite Materials and Mechanics	1
5.7	Environmental Issues related to Composites	2

Course Designer(s)

1.Dr.D.Siva Kumar

- sivakumard@ksrct.ac.in

70 PAC 001	English for Research Paper Writing	Category	L	Т	Р	Credit
	pog	PC	2	0	0	0

- Teach how to improve writing skills and level of readability
- Tell about what to write in each section
- Summarize the skills needed when writing a Title
- Infer the skills needed when writing the Conclusion
- Ensure the quality of paper at very first-time submission

Pre-requisites

-NIL-

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Understand that how to improve your writing skills and level of readability	Apply
CO2	Learn about what to write in each section	Analyse
CO3	Understand the skills needed when writing a Title	Understand
CO4	Understand the skills needed when writing the Conclusion	Analyse
CO5	Ensure the good quality of paper at very first-time submission	Apply

Mapping with Programme Outcomes

Cos	Pos								
Cos	1	2	3	4	5	6			
CO1	3	3	2	2	3	1			
CO2	3	3	2	2	3	1			
CO3	3	3	2	2	3	1			
CO4	3	3	2	3	2	1			
CO5	3	3	2	3	2	1			
3 - Strong	; 2 - Medium;	3 - Strong; 2 - Medium; 1 – Some							

Assessment Pattern

Bloom's Category	Continuous Assessment Tests (Marks)				
Bloom's Category	1	2			
Remember	30	30			
Understand	30	30			
Apply	40	40			
Analyse	-	1			
Evaluate	-	1			
Create	-	1			
Total	100	100			

Syllabus									
_	K.S.Rangasamy College of Technology – Autonomous R2022								
	M.E - Structural Engineering								
		70 PAC 00	1 - Englis	h for Rese	arch Pape	r Writing			
Semeste	, H	lours/Weel	K	Total	Credit	Ма	ximum Ma	rks	
Seilleste	L	T	Р	Hours	C	ES	Total		
	2	0	0	30	0	40	60	100	
Introduction to Research Paper Writing Planning and Preparation, Word Order, Breaking up long sentences, Structuring Paragraphs and Sentences, Being Concise and Removing Redundancy, Avoiding Ambiguity and Vagueness							[6]		
Presen Clarifying	ation Skills Who Did sing and Plag	What, Hig					Criticizing,	[6]	
Key skills key skills of the Lite	riting Skills are needed vare needed vare needed varature, Metho	when writing ods, Results	g an Introdi	uction, skills	needed w	hen writing		[6]	
Skills are	Writing Skills needed wher ed when writir	n writing the						[6]	
are needed when writing the Discussion, skills are needed when writing the Conclusions Verification Skills Useful phrases, checking Plagiarism, how to ensure paper is as good as it could possibly be the first time submission						[6]			
						To	otal Hours	30	
Text Boo									
	Adrian Wallwork English for Writing Research Papers, Springer New York Dordrecht							Dordrecht	
	/ R How to W	rite and Pul	olish a Scie	ntific Paper,	, Cambridge	e University	Press 2006	3	
Reference	. ,								
	dbort R Writir	•			•				
_	hman N, Han					_			
	ll Williams, Ad							18	
4. Su	4. Sudhir S. Pandhye, English Grammar and Writing Skills, Notion Press, 2017.								

CHAIRMAN
Board of Studies
Faculty of Civil Engineering
K.S.Rangasamy College of Technology
TIRUCHENGODE - 637 215

S. No.	Topics	No. of
1.0	Introduction to Research Paper Writing	1100.10
1.1	Planning and Preparation, Word Order	2
1.2	Breaking up long sentences, Structuring Paragraphs and Sentences	1
1.3	Being Concise and Removing Redundancy	2
1.4	Avoiding Ambiguity and Vagueness	1
2.0	Presentation Skills	
2.1	Clarifying Who Did What, Highlighting Your Findings	2
2.2	Hedging and Criticizing	2
2.3	Paraphrasing and Plagiarism, Sections of a Paper	1
2.4	Abstracts, Introduction	1
3.0	Title Writing Skills	
3.1	Key skills are needed when writing a Title	1
3.2	Key skills are needed when writing an Abstract, key skills are needed when writing an Introduction	2
3.3	Skills needed when writing a Review of the Literature	2
3.4	Methods, results, discussion, conclusions, the final check	1
4.0	Result Writing Skills	•
4.1	Skills are needed when writing the Methods	2
4.2	Skills needed when writing the Results	1
4.3	Skills are needed when writing the Discussion	1
4.4	Skills are needed when writing the Conclusions	2
5.0	Verification Skills	
5.1	Useful phrases	2
5.2	Checking Plagiarism	2
5.3	How to ensure paper is as good as it could possibly be the first time submission	2

Course Designer

Dr.A.Palaniappan – <u>palaniappan@ksrct.ac.in</u>

70 PAC 002	Disaster Management	Category	L	Т	Р	Credit
	agomont	PC	2	0	0	0

- Summarize basics of disaster
- Explain a critical understanding of key concepts in disaster risk reduction and humanitarian response.
- Illustrate disaster risk reduction and humanitarian response policy and practice from multiple perspectives.
- Describe an understanding of standards of humanitarian response and practical relevance in specific types of disasters and conflict situations.
- Develop the strengths and weaknesses of disaster management approaches Teach how to improve writing skills and level of readability

Pre-requisites

-NIL-

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Ability to summarize basics of disaster	Apply
CO2	Ability to explain a critical understanding of key concepts in	Analyse
COZ	disaster risk reduction and humanitarian response.	
CO3	Ability to illustrate disaster risk reduction and humanitarian	Understand
003	response policy and practice from multiple perspectives.	
	Ability to describe an understanding of standards of humanitarian	Analyse
CO4	response and practical relevance in specific types of disasters and	
	conflict situations.	
CO5	Ability to develop the strengths and weaknesses of disaster	Apply
003	management approaches	

Pos								
1	2	3	4	5	6			
3	3	2	2	3	1			
3	3	2	2	3	1			
3	3	2	2	3	1			
3	3	2	3	2	1			
3	3	2	3	2	1			
	1 3 3 3 3 3 3	1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 5 Medium; 1 – Some	1 2 3 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2	1 2 3 4 3 3 2 2 3 3 2 2 3 3 2 2 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3	1 2 3 4 5 3 3 2 2 3 3 3 2 2 3 3 3 2 2 3 3 3 2 3 2 3 3 2 3 2 3 3 2 3 2 3 3 2 3 2			

Assessment Pattern		
Plaam'a Catagory	Continuous A	ssessment Tests (Marks)
Bloom's Category	1	2
Remember	30	30
Understand	30	30

Apply	40	40
Analyse	-	-
Evaluate	-	-
Create	-	-
Total	100	100

Syllabu	5							
	K.S.F	Rangasamy			gy – Auton	omous R2	2022	
				ctural Eng				
	_				Manageme			
Semest	er —	lours/Wee		Total	Credit		ximum Mar	
	L	Т	Р	Hours	С	CA	ES	Total
<u>II</u>	2	0	0	30	0	40	60	100
Introduction Disaster: Definition, Factors and Significance; Difference between Hazard and Disaster; Natural and Manmade Disasters: Difference, Nature, Types and Magnitude.								[6]
Repercussions of Disasters and Hazards Economic Damage, Loss of Human and Animal Life, Destruction of Ecosystem. Natural Disasters: Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Droughts And Famines, Landslides And Avalanches, Man-made disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks And Spills, Outbreaks Of Disease And Epidemics, War And Conflicts.								[6]
Disast Study of Avalance	er Prone Area f Seismic Zones; Areas Pro ; Post-Disaste	ones; Areasone to Cyc	onic and C	coastal Haz				[6]
Disaster Preparedness and Management Preparedness: Monitoring of Phenomena Triggering a Disaster or Hazard; Evaluation of Risk: Application of Remote Sensing, Data from Meteorological and other Agencies, Media Reports: Governmental and Community Preparedness.								[6]
Risk Assessment Disaster Risk: Concept and Elements, Disaster Risk Reduction, Global and National Disaster Risk Situation. Techniques of Risk Assessment, Global Co-Operation in Risk Assessment and Warning, People's Participation in Risk Assessment. Strategies for Survival.						on in Risk	[6]	
						To	otal Hours	30
1. GPU	Text Book(s): 1. Goel S. L., Disaster Administration and Management Text And Case Studies", Deep & Dee Publication Pvt. Ltd., New Delhi,2009. NishithaRai, Singh AK "Disaster Management in India: Perspectives, issues and strategies."							
Referen	•	ii oompany	,2001.					
1 Sa	nhni, Pardeepe 01.	t.al.," Disas	ter Mitigation	on Experier	ices and Re	eflections",	Prentice Hal	l of India,
	ıbramanian R,							
3. M	nu-huaKuei, C anagement: Cl	imate chan	ge and Natı	ural Disaste	r, world scie	entific, 2017	7.	
	nkiAndharia, [20.	Disaster stu	dies: Explo	ring Interse	ctional ties	in Disaster	Discourse,	Springer,

Course Contents and Lecture Schedule No. of S. No. **Topics** hours 1.0 Introduction Disaster: Definition, Factors and Significance 1.1 2 1.2 Difference between Hazard and Disaster 2 1.3 Natural and Manmade Disasters 1.4 Difference, Nature 2 1.5 Types and Magnitude 1 Repercussions of Disasters and Hazards 2.0 Economic Damage, Loss of Human and Animal Life 2.1 2 Destruction of Ecosystem. Natural Disasters: Earthquakes, Volcanisms, 2 2.2 Cyclones 2.3 Tsunamis, Floods, Droughts And Famines, Landslides And Avalanches 2.4 Man-made disaster: Nuclear Reactor Meltdown, Industrial Accidents 1 Oil Slicks And Spills, Outbreaks Of Disease And Epidemics, War And 2 2.5 Conflicts 3.0 Disaster Prone Areas In India Study of Seismic Zones 3.1 1 Areas Prone to Floods and Droughts 3.2 2 Landslides and Avalanches 2 3.3 Areas Prone to Cyclonic and Coastal Hazards with Special Reference To 3.4 2 Tsunami 3.5 Post-Disaster Diseases and Epidemics 2 4.0 **Disaster Preparedness and Management** 4.1 Preparedness: Monitoring of Phenomena Triggering a Disaster or Hazard 4.2 Tsunamis, Floods, Droughts And Famines, Landslides And Avalanches 2 Tsunamis, Floods, Droughts And Famines, Landslides And Avalanches 2 4.3 Application of Remote Sensing, Data from Meteorological and other Agencies 2 4.4 4.5 Media Reports: Governmental and Community Preparedness 1 5.0 **Risk Assessment** 5.1 Disaster Risk: Concept and Elements 5.2 Disaster Risk Reduction, Global and National Disaster Risk Situation 2 Techniques of Risk Assessment 5.3 2 5.4 Global Co-Operation in Risk Assessment and Warning 2 5.5 People's Participation in Risk Assessment. Strategies for Survival

Course Designer

1. Dr.M.Velumani- velumani@ksrct.ac.in

70 PAC 003	Constitution of India	Category	L	Т	Р	Credit
	India	PC	2	0	0	0

Objectives

- Understand the premises informing the twin themes of liberty and freedom from a civil rights perspective.
- To address the growth of Indian opinion regarding modern Indian intellectuals' constitutional. Role and entitlement to civil and economic rights as well as the emergence nation hood in the early years of Indian nationalism.
- To address the role of socialism in India after the commencement of the Bolshevik Revolutionin1917and its impact on the initial drafting of the Indian Constitution.

Pre-requisites

-NIL-

Course Outcomes

On the successful completion of the course, students will be able to

on the education of the							
CO1	Discuss the growth of the demand for civil rights in India for the bulk of	Apply					
5	Indians before the arrival of Gandhi in Indian politics.						
	Discuss the intellectual origins of the framework of argument that	Analyse					
CO2	informed the conceptualization of social reforms leading to revolution	-					
	in India						
	Discuss the circumstances surrounding the foundation of the Congress	Understand					
CO3	Socialist Party [CSP] under the leadership of Jawaharlal Nehru and the						
003	eventual failure of the proposal of direct elections through adult						
	suffrage in the Indian Constitution.						
CO4	Discuss the passage of the Hindu Code Bill of 1956.	Analyse					
CO5	Discuss the role and functioning of election commission of India.	Apply					

Mapping with Programme Outcomes

Coo		Pos								
Cos	1	2	3	4	5	6				
CO1	3	3	2	2	3	1				
CO2	3	3	2	2	3	1				
CO3	3	3	2	2	3	1				
CO4	3	3	2	3	2	1				
CO5	3	3	2	3	2	1				
	; 2 - Medium; 1	– Some								

Assessment Pattern

Placm's Category	Continuous Assessi	Continuous Assessment Tests (Marks)				
Bloom's Category	1	2				
Remember	30	30				
Understand	30	30				
Apply	40	40				
Analyse	-	-				
Evaluate	-	-				
Create	-	-				
Total	100	100				

Syllabu	S							
	K.S.Rangasamy College of Technology – Autonomous R2022							
M.E - Structural Engineering								
70 PAC 003 - Constitution of India								
Semest	or H	lours/Wee	_	Total	Credit		ximum Mar	ks
	L	T	Р	Hours	С	CA	ES	Total
ll l								100
History of Making of The Indian Constitution History, Drafting Committee, (Composition & Working)							[6]	
Philoso	phy of The Inc e, Salient Feat	lian Const		, , , , , , , , , , , , , , , , , , ,				[6]
Contours of Constitutional Rights and Duties Fundamental Rights, Right to Equality, Right to Freedom, Right against Exploitation, Right to Freedom of Religion, Cultural and Educational Rights, Right to Constitutional Remedies, Directive Principles of State Policy, Fundamental Duties.							[6]	
	of Governanc			,				[6]
Parliament, Composition, Qualifications and Disqualifications, Powers and Functions, Executive, President, Governor, Council of Ministers, Judiciary, Appointment and Transfer of Judges, Qualifications, Powers and Functions.								
			,		·			[6]
Local Administration District's Administration head: Role and Importance Municipalities: Introduction, Mayor and role of Elected Representative, CEO, Municipal Corporation. Panchayat raj: Introduction, PRI: ZilaPanchayat. Elected officials and their roles, CEO ZilaPanchayat: Position and role. Block level: Organizational Hierarchy (Different departments), Village level: Role of Elected and Appointed officials, Importance of grass root democracy.						[-]		
	Commission			•				
Election Commission: Role and Functioning. Chief Election Commissioner and ElectionCommissioners - Institute and Bodies for the welfare of SC/ST/OBC and women.							l women.	30
Text Bo	ok(s):							
1. Th	ne Constitution	of India,19	50 (Bare Ac	t),Governm	ent Publica	tion.		
2. Bı	usi S N, Ambed	lkar B R, "l	raming of Ir	ndian Const	itution",1st	Edition, 201	5.	
Referen	ce(s):							
	ain, M P, "Indiai	n Constitut	ion Law", 7th	n Edition, Le	exis Nexis,2	014		
	asu, D D, "Intro	duction to	the Constitu	tion of India	", Lexis Ne	xis, 2015.		
	nansali S R., "T							
4. Ja	in, M P., "Outli	nes of Indi	an Legal and	d Constitution	onal History	", Lexis Nex	kis, 2014	

Course C	Contents and Lecture Schedule	
S. No.	Topics	No. of hours
1.0	History of Making of The Indian Constitution	
1.1	History	1
1.2	Drafting Committee, (Composition & Working)	2
2.0	Philosophy of The Indian Constitution	
2.1	Preamble, Salient Features	3
3.0	Contours of Constitutional Rights and Duties	
3.1	Fundamental Rights, Right to Equality, Right to Freedom	1
3.2	Right against Exploitation, Right to Freedom of Religion	1
3.3	Cultural and Educational Rights	1
3.4	Right to Constitutional Remedies	1
3.5	Directive Principles of State Policy, Fundamental Duties	2
4.0	Organs of Governance	
4.1	Parliament, Composition, Qualifications and Disqualifications	2
4.2	Powers and Functions, Executive	1
4.3	President, Governor, Council of Ministers	1
4.4	Judiciary, Appointment and Transfer of Judges	1
4.5	Qualifications, Powers and Functions	1
5.0	Local Administration	
5.1	District's Administration head: Role and Importance Municipalities	1
5.2	Introduction, Mayor and role of Elected Representative, CEO, Municipal	1
5.2	Corporation	1
5.3	Panchayat raj: Introduction, PRI: ZilaPanchayat. Elected officials and their	1
5.5	roles	ı
5.4	CEO ZilaPanchayat: Position and role. Block level: Organizational Hierarchy	1
	(Different departments)	•
5.5	Village level: Role of Elected and Appointed officials, Importance of grass root	2

P. Wyww CHAIRMAN
Board of Studies
Faculty of Civil Engineering
K.S.Rangasamy College of Technology
TIRUCHENGODE - 637 215

democracy	

Course Designer

Dr.S.Ramesh - rameshs@ksrct.ac.in